+0  
 
0
945
2
avatar+105 

 

i)  Show that for all positivew integers n,

 

\(x[(1+x)^{n-1}+(1+x)^{n-2}+\dots (1+x)+1]=(1+x)^n-1\\ \)

I can do this first bit no worries but then part 2 is

 

Hence show that for   \(1\le k\le n\)

 

\(\begin{pmatrix}n-1 \\k-1\end{pmatrix}+ \begin{pmatrix}n-2 \\k-1\end{pmatrix}+ \begin{pmatrix}n-3 \\k-1\end{pmatrix}+\dots + \begin{pmatrix}k-1 \\k-1\end{pmatrix}= \begin{pmatrix}n \\k\end{pmatrix} \)

 

I don't know how to do this second bit.  Can someone help me please?

 Sep 7, 2016
 #1
avatar
0

Give n and k numerical value, which might be easier to visualize: i. e. n=11, k=3

(11 -1)C(3 - 1)=45 + (11 - 2)C(3 - 1)=36+ (11 - 3)C(3 - 1)=28+(11 - 4)C(3-1)=21........=11C3=165

       45                   +         36                   +         28                 +       21........+15+ 10+6+3+1  =165

 Sep 7, 2016
 #2
avatar+118117 
+5

i)  Show that for all positiveintegers n,

 

\(x[(1+x)^{n-1}+(1+x)^{n-2}+\dots (1+x)+1]=(1+x)^n-1\qquad (1)\\\)

 

I can do this first bit no worries but then part 2 is

 

Hence show that for   \(1\le k\le n\)

 

\(\begin{pmatrix}n-1 \\k-1\end{pmatrix}+ \begin{pmatrix}n-2 \\k-1\end{pmatrix}+ \begin{pmatrix}n-3 \\k-1\end{pmatrix}+\dots + \begin{pmatrix}k-1 \\k-1\end{pmatrix}= \begin{pmatrix}n \\k\end{pmatrix}\)

 

I don't know how to do this second bit.  Can someone help me please?

 

Ok what you need to see is that is the coefficient of x^k  in the right hand side of equation 1 is   nCk

So I need to find the coefficient of x^k in the left hand side.

Those two coefficients mucs be equal

 

Looking at equation (1)

 

\(RHS\\ = (1+x)^n-1\\ =\begin{pmatrix}n\\0\end{pmatrix} +\begin{pmatrix}n\\1\end{pmatrix}x +\begin{pmatrix}n\\2\end{pmatrix}x^2\dots +\begin{pmatrix}n\\k\end{pmatrix}x^k\dots +\begin{pmatrix}n\\n\end{pmatrix}x^n-1\\ \therefore \mbox{The coefficient of }x^k \;\;is\;\;\begin{pmatrix} n\\k \end{pmatrix}\)

 

 

\(LHS=x[(1+x)^{n-1}+(1+x)^{n-2}+\dots (1+x)+1]\\ \mbox{I want to find the coefficient of }x^k\\ \mbox{So I am only interested in }x^{k-1} \;\;\mbox{terms in the binomial expansions}\\ x\left [\begin{pmatrix} n-1\\k-1 \end{pmatrix}x^{k-1}+\begin{pmatrix} n-2\\k-1 \end{pmatrix}x^{k-1}+\dots +\begin{pmatrix} k-1\\k-1 \end{pmatrix}x^{k-1} \right]\\ =\left [\begin{pmatrix} n-1\\k-1 \end{pmatrix}+\begin{pmatrix} n-2\\k-1 \end{pmatrix}+\dots +\begin{pmatrix} k-1\\k-1 \end{pmatrix}\right]x^k\\ \)

 

Equating coefficients we have

 

\(\begin{pmatrix} n-1\\k-1 \end{pmatrix}+\begin{pmatrix} n-2\\k-1 \end{pmatrix}+\dots +\begin{pmatrix} k-1\\k-1 \end{pmatrix}= \begin{pmatrix} n\\k \end{pmatrix} \)

 

*

 Sep 8, 2016

11 Online Users

avatar