Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
996
1
avatar

Let n be a positive integer greater than or equal to 3. Let a,b be integers such that ab is invertible modulo n and (ab)12(modn). Given a+b is invertible, what is the remainder when (a+b)1(a1+b1) is divided by n?

 Jan 25, 2021
 #1
avatar+118703 
+1

 

This is my take:

 

(ab)1=2modnWhat does this even mean, wellthe inverse of 7 is 1/7 because 7(1/7)=1so(ab)1(ab)=1modn2ab=1modn (a+b)1(a1+b1)=1a+b(b+aab)=1ab2modn

 

 

Coding:

(ab)^{-1}=2\mod n\\
\text{What does this even mean, well}\\
\text{the inverse of 7 is  1/7  because } 7*(1/7)=1\\
so\\
(ab)^{-1}*(ab)=1\mod n\\
2ab=1\mod n\\~\\

(a+b)^{-1}(a^{-1}+b^{-1})\\
=\frac{1}{a+b}*(\frac{b+a}{ab})\\
=\frac{1}{ab}\\
\equiv 2\mod n

 Jan 25, 2021

2 Online Users