Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
604
1
avatar

1.Gold Company invested $1,491,420.00 for 11 years in bonds. What was the effective rate of interest earned on the investment if the bonds matured to $4,019,013.00?

 

 

2.If $73,376.39 was the interest earned on lending $101,000 for 7 years, what was the quarterly compounding nominal interest rate charged on the loan.

 

 

3.The interest amount on a $59,000 loan was $227,708.21. If the interest rate charged on loan was 7.74% compounded semi-annually, calculate the following, rounding your answer to two decimal places:
a. What was the accumulated value of the loan?
Round to the nearest cent.
b. What was the time period of the loan?
years

 

months
 
 
 
 
4.What quarterly compounding nominal interest rate is earned on an investment that doubles in 7 years?
 
 Nov 17, 2014

Best Answer 

 #1
avatar+23254 
+5

The compound interest formula:  A  =  P(1 + r/n)^(n·t)

A  =  final amount         P  =  beginning amount         r  =  rate (as a decimal)

n  =  number of times compounded per year             t  =  number of years

1)  4 019 013  =  1 491 420(1 + r/1)^(1·11)   --->   4 019 013  =  1 491 420(1 + r)^(11)

   --->  (divide by 1 491 420)   --->   2.694 756(1 + r)^11

   --->   (take the 11th root)   --->   1.0943  =  1 + r     --->   r  =  0.094304365

2) If $73,376.39 was the interest earned on lending $101,000, this means that the final amount is $73,376.39 + $101,000  =  $174,376.39:

     174,376.39  =  101 000(1 + r/4)^(4·7)     --->     174,376.39  =  101 000(1 + r/4)^28

    --->  (divide by 101 000)   --->   1.726498911 =  (1 + r/4)^28

   --->   (take the 28th root)   --->   1.019694849  =  1 + r/4

   --->   0.019694849  =   r/4     --->   r  =  0.0787793946

3)  a)  Interest of $227,708.21 on a loan of $59,000 loan gives a final amount of $286,708.21.

   b)  286 708.21  =  59 000(1 + 0.074/2)^(2·n) 

--->   4.859461186  =  (1.037)^(2n)

--->  (find the log of both sides)   --->  log( 4.859461186 )  = log[ 1.037^(2n) ]

---> (exponents come out as multipliers)   --->   log( 4.859461186 )  = 2n · log[ 1.037 ]   

---> (divide by 2· log[ 1.037 ] )   --->   21.7567247 years

4) 2 =  1·(1 + r/4)^(4·7)     --->     2 = (1 + r/4)^28
      <finish like problem #1>
There's a lot of stuff here --- any questions?
 Nov 17, 2014
 #1
avatar+23254 
+5
Best Answer

The compound interest formula:  A  =  P(1 + r/n)^(n·t)

A  =  final amount         P  =  beginning amount         r  =  rate (as a decimal)

n  =  number of times compounded per year             t  =  number of years

1)  4 019 013  =  1 491 420(1 + r/1)^(1·11)   --->   4 019 013  =  1 491 420(1 + r)^(11)

   --->  (divide by 1 491 420)   --->   2.694 756(1 + r)^11

   --->   (take the 11th root)   --->   1.0943  =  1 + r     --->   r  =  0.094304365

2) If $73,376.39 was the interest earned on lending $101,000, this means that the final amount is $73,376.39 + $101,000  =  $174,376.39:

     174,376.39  =  101 000(1 + r/4)^(4·7)     --->     174,376.39  =  101 000(1 + r/4)^28

    --->  (divide by 101 000)   --->   1.726498911 =  (1 + r/4)^28

   --->   (take the 28th root)   --->   1.019694849  =  1 + r/4

   --->   0.019694849  =   r/4     --->   r  =  0.0787793946

3)  a)  Interest of $227,708.21 on a loan of $59,000 loan gives a final amount of $286,708.21.

   b)  286 708.21  =  59 000(1 + 0.074/2)^(2·n) 

--->   4.859461186  =  (1.037)^(2n)

--->  (find the log of both sides)   --->  log( 4.859461186 )  = log[ 1.037^(2n) ]

---> (exponents come out as multipliers)   --->   log( 4.859461186 )  = 2n · log[ 1.037 ]   

---> (divide by 2· log[ 1.037 ] )   --->   21.7567247 years

4) 2 =  1·(1 + r/4)^(4·7)     --->     2 = (1 + r/4)^28
      <finish like problem #1>
There's a lot of stuff here --- any questions?
geno3141 Nov 17, 2014

2 Online Users

avatar
avatar