+0  
 
0
219
3
avatar+394 

What is the coefficient of xy in the expansion of  \((3x+(2y+1))^2\)?

Mr.Owl  Dec 30, 2017
 #1
avatar
0

Here is a long and detailed answer. Sorry, no LaTex!.

 

Expand the following:

(3 x + (2 y + 1))^2

 

Treating (1 + 3 x + 2 y)^2 as the binomial ((3 x + 1) + 2 y)^2, expand using FOIL.

((3 x + 1) + 2 y) ((3 x + 1) + 2 y) = (3 x + 1) (3 x + 1) + (3 x + 1) (2 y) + (2 y) (3 x + 1) + (2 y) (2 y) = (3 x + 1)^2 + 2 (3 x + 1) y + 2 (3 x + 1) y + 4 y^2 = (3 x + 1)^2 + 4 (3 x + 1) y + 4 y^2:

2×2 y (3 x + 1) + (3 x + 1)^2 + (2 y)^2

 

Multiply 3 x + 1 and 3 x + 1 together using FOIL.

(3 x + 1) (3 x + 1) = (3 x) (3 x) + (3 x) (1) + (1) (3 x) + (1) (1):

2×2 y (3 x + 1) + 3×3 x x + 3 x + 3 x + 1 + (2 y)^2

 

Combine products of like terms.

3 x×3 x = 3×3 x^2:

2×2 y (3 x + 1) + 3×3 x^2 + 3 x + 3 x + 1 + (2 y)^2

 

2×2 y (3 x + 1) + 9 x^2 + 3 x + 3 x + 1 + (2 y)^2

 

Distribute exponents over products in (2 y)^2.

Multiply each exponent in 2 y by 2:

2×2 y (3 x + 1) + 9 x^2 + 3 x + 3 x + 1 + 2^2 y^2

 

2×2 y (3 x + 1) + 9 x^2 + 3 x + 3 x + 1 + 4 y^2

Group like terms in 2 (3 x + 1)×2 y + 9 x^2 + 3 x + 3 x + 1 + 4 y^2.

Grouping like terms, 2 (3 x + 1)×2 y + 9 x^2 + 3 x + 3 x + 1 + 4 y^2 = 4 y^2 + 4 (3 x + 1) y + 9 x^2 + (3 x + 3 x) + 1:

4 y^2 + 4 y (3 x + 1) + 9 x^2 + (3 x + 3 x) + 1

 

Add like terms in 3 x + 3 x.

3 x + 3 x = 6 x:

4 y^2 + 4 y (3 x + 1) + 9 x^2 + 6 x + 1

 

Distribute 4 y over 3 x + 1.

4 y (3 x + 1) = 4 y×1 + 4 y×3 x:

4 y^2 + 4 y + 4×3 y x + 9 x^2 + 6 x + 1

 

4 y^2 + 4 y + 12 y x + 9 x^2 + 6 x + 1

Guest Dec 30, 2017
 #2
avatar+394 
0

Unfortunatly this answer: 

4 y^2 + 4 y + 12 y x + 9 x^2 + 6 x + 1

 

 

 Is not right, any other ideas???

Mr.Owl  Dec 31, 2017
 #3
avatar+87621 
+2

Note  ...  (a  + b)^2  =  a^2  + 2ab  +  b^2

 

Let  a  =  3x      and b  =  (2y + 1)     ....   so we have

 

(3x  + (2y + 1) )^2  =

 

(3x)^2   +  2 (3x)(2y+1)  + (2y + 1)^2

 

We only  care about the middle term....so....

 

2(3x)(2y + 1)   =

 

6x (2y + 1)  =

 

12xy  +  6x

 

So.....the coefficient is  12

 

 

cool cool cool

CPhill  Dec 31, 2017

15 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.