+0

# I have another question.

0
56
5
+96

Find the value of \$B - A\$ if the graph of \$Ax + By = 3\$ passes through the point \$(-7,2),\$ and is parallel to the graph of \$x + 3y = -5.\$

Mar 19, 2021

#1
-1

From x + 3y = -5, y = -x/3 - 5, so the slope of the line is -1/3. The slope of the new line is also -1/3, so y = -x/3 + B.  Pugging in x = 2 and y = -7, we get -7 = -2/3 + B, so B = -19/3.

Then the line is y = -x/3 - 19/3.  Then 3y = -x - 19, so 3y + x = -19.  We want the right-hand side to be 3, so we mutiply both sides by -3/19: -9/19*y - 3/19*x = 3.  Therefore, A + B = -9/19 - 3/19 = -12/19.

Mar 19, 2021
#2
+96
0

That is not correct.

Thank you for trying though.

Immaguest  Mar 19, 2021
#3
+118015
+1

The slope of  x+ 3y  = -5    is    -1/3

So.....the equation  of  a line  with a slope  of  -1/3   and passes  throiugh  the point  (-7,2) is

y = (-1/3)(x - - 7)   +  2            simplify

y = (-1/3)x - 7/3  + 6/3

y  = (-1/3)x  - 1/3                 multiply  through  by  3

3y  = -x   - 1               add x to both sides

x + 3y  =  -1

B  = 3    A  =1

B  - A  =   2

Here's a graph  :   https://www.desmos.com/calculator/qhp2legobe

Mar 19, 2021
#4
+96
0

It says that that is incorrect.

Thank you for trying.

Immaguest  Mar 21, 2021
#5
+96
0

Pleae help!

Mar 22, 2021