+0  
 
+1
7
3
avatar+38 

The position of a particle is given by the parametric equations
as t ranges over all real numbers.
 

x=3+2sin(2t)

y=4+2cos(2t)

The particle visits the points P, Q, R, S at times -pi/6, 0, pi/3, pi/2 in some order. Order the points
so that the particle is at the first point at time -pi/6, at the second point at time 0, at the third point at time pi/3, and at the last point at time pi/2.

 

I would really appreciate an answer as soon as possible. Thanks!

 

THIS IS JUST TO GET THE ATTENTION OF POTENTIAL ANSWER HOLDERS IF YOU KNOW HOW TO DO THIS PLEASE HELP THANKS!

 Jul 26, 2024
edited by JRFPLSHelp  Jul 26, 2024
 #1
avatar+129895 
+1

P

  x =   3 + 2sin (2 *-pi6)  =  3 + 2 sin (-pi/3)  = 3 + 2  *(-sqrt 3 / 2) = 3 - sqrt 3

  y =    4 + 2cos (2 *-pi/6)  =  4 + 2 cos (-pi/3)  =   4 + 2(1/2) =  5

 

Q

x = 3 + 2sin (2*0)  = 3 + 2(0) =  3

y = 4 + 2cos (2*0) =  4 + 2 (1) = 6

 

R

x= 3 + 2sin (2 *pi/3) =  3 + 2 sin (2pi/3) = 3 + 2 (sqrt 3 / 2) =  3 + sqrt 3

y = 4 + 2cos(2 *pi/3) = 4 + 2 (-1/2) = 3

 

S

x = 3 + 2sin (2 *pi/2)  = 3 + 2 (0) =  3

y = 4 + 2cos (2 *pi/2)  = 4 + 2(-1) = 2

 

 

cool cool cool

 Jul 27, 2024

3 Online Users

avatar