+0  
 
0
30
3
avatar

How many positive four-digit integers n have the property that the three-digit number obtained by removing the leftmost digit is one-ninth of n?

 
Guest Aug 9, 2018

Best Answer 

 #1
avatar+19834 
+1

How many positive four-digit integers n have the property that the three-digit number obtained by removing

the leftmost digit is one-ninth of n?

 

\(\begin{array}{|lrcll|} \hline (1) & n_4 &=& 10^3a + n_3 \\ \\ \hline \\ (2) & n_3 &=& \dfrac{n_4}{9} \\\\ & 9n_3 &=& n_4 \\\\ & 9n_3 &=& 10^3a + n_3 \\\\ & 8n_3 &=& 10^3a \quad & | \quad : 8 \\\\ & \mathbf{n_3} & \mathbf{=} & \mathbf{125a} \\ \hline \end{array} \)

 

\(\begin{array}{|r|c|l|l|} \hline & n_3=125a & \\ a & n_3\lt 1000 & n_4 &\\ \hline 1 & 125 & 1125 & \frac{1125}{9} = 125 \\ 2 & 250 & 2250 & \frac{2250}{9} = 250 \\ 3 & 375 & 3375 & \frac{3375}{9} = 375 \\ 4 & 500 & 4500 & \frac{4500}{9} = 500 \\ 5 & 625 & 5625 & \frac{5625}{9} = 625 \\ 6 & 750 & 6750 & \frac{6750}{9} = 750 \\ 7 & 875 & 7875 & \frac{7875}{9} = 875 \\ \hline \end{array}\)

 

laugh

 
heureka  Aug 10, 2018
 #1
avatar+19834 
+1
Best Answer

How many positive four-digit integers n have the property that the three-digit number obtained by removing

the leftmost digit is one-ninth of n?

 

\(\begin{array}{|lrcll|} \hline (1) & n_4 &=& 10^3a + n_3 \\ \\ \hline \\ (2) & n_3 &=& \dfrac{n_4}{9} \\\\ & 9n_3 &=& n_4 \\\\ & 9n_3 &=& 10^3a + n_3 \\\\ & 8n_3 &=& 10^3a \quad & | \quad : 8 \\\\ & \mathbf{n_3} & \mathbf{=} & \mathbf{125a} \\ \hline \end{array} \)

 

\(\begin{array}{|r|c|l|l|} \hline & n_3=125a & \\ a & n_3\lt 1000 & n_4 &\\ \hline 1 & 125 & 1125 & \frac{1125}{9} = 125 \\ 2 & 250 & 2250 & \frac{2250}{9} = 250 \\ 3 & 375 & 3375 & \frac{3375}{9} = 375 \\ 4 & 500 & 4500 & \frac{4500}{9} = 500 \\ 5 & 625 & 5625 & \frac{5625}{9} = 625 \\ 6 & 750 & 6750 & \frac{6750}{9} = 750 \\ 7 & 875 & 7875 & \frac{7875}{9} = 875 \\ \hline \end{array}\)

 

laugh

 
heureka  Aug 10, 2018
 #2
avatar+87629 
+1

Very nice, heureka  !!!!

 

 

cool cool cool

 
CPhill  Aug 11, 2018
 #3
avatar+19834 
0

Thank you, CPhill

 

laugh

 
heureka  Aug 13, 2018

14 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.