+0  
 
0
537
0
avatar+286 

\( \large \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{i! j! k!}{(i+j+k+2)!} \)  If the value of this summation is equal to  \(\pi^A\div B \) for integers \(A\) and \(B\), find the value of \(B-A\)! demostrate aswell on how you got your answear!

 
 Dec 1, 2015

2 Online Users

avatar
avatar