+0  
 
0
986
4
avatar+476 

14^15 mod 15

 Jun 23, 2017
 #1
avatar+9673 
+1

14^1 mod 15 = 14

14^2 mod 15 = 1

14^3 mod 15 = 14

14^4 mod 15 = 1

.

.

.

We can see that 14^(2n+1) mod 15 = 14 and 14^(2n) mod 15 = 1

So that 14^15 mod 15 = 14. :D

 Jun 26, 2017
 #2
avatar+9673 
0

Now take an attempt on this problem:

\(14^{(1+2+3+4+5+6+...+107)}\pmod {15}=??\)

 Jun 26, 2017
 #3
avatar
+1

1+2+3+4+5+6...........+ 107 = [107 x 108] / 2 =5,778. So we have: 14^5,778 mod 15 =1

Guest Jun 26, 2017
 #4
avatar+26393 
+1

14^15 mod 15

 

\(\begin{array}{|rcll|} \hline \mathbf{ 14^{15} \pmod {15} =\ ? } \\\\ && 14^{15} \pmod {15} \quad &| \quad 14 \equiv -1 \pmod {15} \\ &\equiv& (-1)^{15} \pmod {15} \quad &| \quad (-1)^{15} = -1 \\ &\equiv& -1 \pmod {15} \\ &\equiv& -1 +15 \pmod {15} \\ &\equiv& 14 \pmod {15} \\\\ \mathbf{ 14^{15} \pmod {15} = 14 } \\ \hline \end{array} \)

 

 

laugh

 Jun 26, 2017
edited by heureka  Jun 26, 2017

1 Online Users

avatar