Simplify both I and w
\(I=(8^2*3.14)+(8^2*3.142)\) I assume 3.14 is "pi" so
\(I=(8^2*\varpi )+(8^2*\varpi )\) Factor
\(I=(8^2*\varpi )(1+1)=2(8^2*\varpi )\)
Now w
\(w=(\varpi *16*14)\)
\(a=l+w\)
\(a=2(8^2*\varpi )+(\varpi *16*14)\)
\(a=2*8^2*\varpi +\varpi *16*14\)
\(a=2*8*8*\varpi +\varpi *2*8*2*7\)
Factor, 2,8, \(\varpi \)
\(16\varpi (8+2*7)\)
\(16\varpi (22)\)
\(22*16*\varpi \)
\(2(11*16*\varpi )\)
\(11*32*\varpi \)
\(352\varpi \) = \(1091\) (Exactly, 1105.841...) However, a good approximate without a calculator is assuming \(\varpi =3.10\)