+0  
 
+4
517
3
avatar

i want to fint the lim of this Lim-->4  sin(3x-12)/x-4              and plz explain me how you find it! smiley

 Jan 23, 2016
edited by Guest  Jan 23, 2016

Best Answer 

 #2
avatar+129847 
+5

sin(3x - 12)  / (x - 4)     as x →  4

 

We have a  0/0   situation, here....so we can use L'Hospital's Rule

 

Taking the derivative with respect to x on top/bottom, we have

 

3cos(3x - 12)      as  x  →  4  =

 

3cos(3(4) - 12)  =

 

3cos(12 - 12)  =

 

3cos(0)   =

 

3 * 1  =

 

3

 

This graph confirms the results :   https://www.desmos.com/calculator/60evrkvzkx

 

 

 

cool cool cool

 Jan 23, 2016
 #1
avatar
0

i want to fint the lim of this Lim-->4  sin(3x-12)/x-4              and plz explain me how you find it! 

 

 

 

 

Find the following limit:
lim_(x->(-(4 sin(12-3 x))/x)^-) 4

Since 4 is constant, lim_(x->(-(4 sin(12-3 x))/x)^-) 4  =  4:
Answer: | =4

 

 

 

Find the following limit: Limit from opposite direction:
lim_(x->(-(4 sin(12-3 x))/x)^-) 4

Since 4 is constant, lim_(x->(-(4 sin(12-3 x))/x)^-) 4  =  4:
Answer: | =4

THIS IS TRUE ONLY IF THE DENOMINATOR IS: x - 4 AND NOT (x - 4).

 

 

 

 

 

 


 

 Jan 23, 2016
 #2
avatar+129847 
+5
Best Answer

sin(3x - 12)  / (x - 4)     as x →  4

 

We have a  0/0   situation, here....so we can use L'Hospital's Rule

 

Taking the derivative with respect to x on top/bottom, we have

 

3cos(3x - 12)      as  x  →  4  =

 

3cos(3(4) - 12)  =

 

3cos(12 - 12)  =

 

3cos(0)   =

 

3 * 1  =

 

3

 

This graph confirms the results :   https://www.desmos.com/calculator/60evrkvzkx

 

 

 

cool cool cool

CPhill Jan 23, 2016
 #3
avatar+33661 
+5

Can also be done as follows:

 

limit

 

.

 Jan 23, 2016

0 Online Users