Let m be the product of all positive integers less than 4! which are invertible modulo 4!. Find the remainder when m is divided by 4!. (Here n! denotes 1×⋯×n for each positive integer n.)
mmi = Modular Multiplicative Inverse of 1 to 4! mod 4!.
1 - The mmi = 1 5 - The mmi = 5 7 - The mmi = 7 11 - The mmi = 11 13 - The mmi = 13 17 - The mmi = 17 19 - The mmi = 19 23 - The mmi = 23
m =1 x 5 x 7 x 11 x 13 x 17 x 19 x 23 =37,182,145 37,182,145 mod 4! = 1