We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
112
1
avatar+80 

if the quadratic 3x^2+bx+10 can be written in the form a(x+m)^2+n, where m and n are integers, what is the largest integer that must be a divisor of b?

 Dec 26, 2018
 #1
avatar+5088 
+2

\(3x^2 + b x + 10 = \\ 3\left(x^2 + \dfrac b 3 x + \dfrac{10}{3}\right) = \\ 3\left(\left(x+\dfrac b 6\right)^2 - \dfrac{b^2}{36}+\dfrac{10}{3}\right) = \\ 3\left(x+\dfrac b 6\right)^2+\left(10-\dfrac{b^2}{12}\right)\)

 

\(m = \dfrac b 6\\ \text{so suppose that 6 is the largest integer that must be a divisor of }b\\ \dfrac{b^2}{36} = \dfrac{(6k)^2}{36} = \dfrac{36k^2}{36}=k^2 \in \mathbb{Z}\\ \text{so }n \in \mathbb{Z}\\ \text{So the number you are after is }6\)

.
 Dec 26, 2018

17 Online Users

avatar