+0

I need help with this formula!

0
178
3

The pattern goes like this: 0, 5, 12, 21, 32, 45

and I need to find out the formula for this pattern but I can't seem to figure it out.

Pls help me!

Guest Sep 21, 2017

#3
+19205
+1

The pattern goes like this: 0, 5, 12, 21, 32, 45

and I need to find out the formula for this pattern

$$\begin{array}{lrrrrrrrrrrrrrrrrr} & {\color{red}d_0 = 0} && 5 && 12 && 21 && 32 && 45 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 5} && 7 && 9 && 11 && 13 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 2} && 2 && 2 && 2 && \cdots \\ \end{array}$$

$$\begin{array}{rcl} a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } + \binom{n-1}{2}\cdot {\color{red}d_2 } \\ \end{array}$$

$$\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red} 0 } + \binom{n-1}{1}\cdot {\color{red} 5 } + \binom{n-1}{2}\cdot {\color{red} 2 } \\ &=& (n-1)\cdot 5 + \frac{n-1}{2}\cdot \frac{n-2}{1} \cdot 2 \\ &=& 5n - 5 + (n-1)(n-2) \\ &=& 5n - 5 + n^2-3n+2 \\ &=& 2n +n^2 -3 \\ \mathbf{a_n} & \mathbf{=} & \mathbf{-3+2n+n^2} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline \mathbf{a_n} & \mathbf{=} & \mathbf{-3+2n+n^2} \\ a_1 &=& -3+2*1+1^2 \\ &=& -3+2+1 \\ &=& 0\ \checkmark \\\\ a_2 &=& -3 +2*2 + 2^2 \\ &=& -3+4+4 \\ &=& 5\ \checkmark \\\\ a_3 &=& -3 + 2*3 + 3^2 \\ &=& -3 + 6 + 9 \\ &=& 12\ \checkmark \\ \ldots \\ \hline \end{array}$$

heureka  Sep 21, 2017
Sort:

#1
+6913
+1

0 + 5 = 5

5 + 7 = 12

12 + 9 = 21

21+ 11 = 32

32 + 13 = 45.

The pattern hides in the bold numbers :)

MaxWong  Sep 21, 2017
#2
+69
+1

I was answering the problem also Max, but realized he asked for an equation and didnt know how to do that? like (x+(5+(nth+2)))but that isnt correct

NediaMaster  Sep 21, 2017
edited by NediaMaster  Sep 21, 2017
#3
+19205
+1

The pattern goes like this: 0, 5, 12, 21, 32, 45

and I need to find out the formula for this pattern

$$\begin{array}{lrrrrrrrrrrrrrrrrr} & {\color{red}d_0 = 0} && 5 && 12 && 21 && 32 && 45 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 5} && 7 && 9 && 11 && 13 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 2} && 2 && 2 && 2 && \cdots \\ \end{array}$$

$$\begin{array}{rcl} a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } + \binom{n-1}{2}\cdot {\color{red}d_2 } \\ \end{array}$$

$$\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red} 0 } + \binom{n-1}{1}\cdot {\color{red} 5 } + \binom{n-1}{2}\cdot {\color{red} 2 } \\ &=& (n-1)\cdot 5 + \frac{n-1}{2}\cdot \frac{n-2}{1} \cdot 2 \\ &=& 5n - 5 + (n-1)(n-2) \\ &=& 5n - 5 + n^2-3n+2 \\ &=& 2n +n^2 -3 \\ \mathbf{a_n} & \mathbf{=} & \mathbf{-3+2n+n^2} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline \mathbf{a_n} & \mathbf{=} & \mathbf{-3+2n+n^2} \\ a_1 &=& -3+2*1+1^2 \\ &=& -3+2+1 \\ &=& 0\ \checkmark \\\\ a_2 &=& -3 +2*2 + 2^2 \\ &=& -3+4+4 \\ &=& 5\ \checkmark \\\\ a_3 &=& -3 + 2*3 + 3^2 \\ &=& -3 + 6 + 9 \\ &=& 12\ \checkmark \\ \ldots \\ \hline \end{array}$$

heureka  Sep 21, 2017

24 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details