We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

A point (x,y) is randomly selected such that 0 \le x \le 3 and . 0 \le y \le 6. What is the probability that x + y \le 4? Express your answer as a common fraction.

I tried 2/9 and apparently that wasn't correct.

ANotSmartPerson Dec 13, 2018

#1**+3 **

\(\text{The point }p \text{ is described by a 2D joint uniform distribution}\\ p(x,y) = \dfrac{1}{18},~0\leq x \leq 3,~0\leq y\leq 6\\ P[x+y \leq 4] = P[y\leq 4-x] = \\ \displaystyle \int_0^3 \int_0^{4-x}~\dfrac{1}{18}~dy~dx = \\ \displaystyle \int_0^3 \dfrac{4-x}{18}~dx = \\ \left. \dfrac{4x-\frac{x^2}{2}}{18}\right |_0^3 = \dfrac{12-\frac 9 2}{18} = \dfrac{5}{12}\)

.Rom Dec 13, 2018