We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
202
2
avatar

1. For how many $n=2,3,4,\ldots,99,100$ is the base-$n$ number $235236_n$ a multiple of $7$?

 

 

 

2.What is the smallest base-10 integer that can be represented as $AA_5$ and $BB_7$, where $A$ and $B$ are valid digits in their respective bases? 

 Feb 1, 2019
edited by Guest  Feb 1, 2019
 #1
avatar+7709 
+4

1.

Obviously, \(n\geq 7\).

 

\(\quad 235236_n\\ =2n^5 + 3n^4 + 5n^3 + 2n^2 + 3n + 6\) 

 

This holds true for any \(n\geq 7\).

Then, clearly, \(2n^5+3n^4+5n^3+2n^2+3n\equiv 1\pmod7\).

Define \(P(n) = 2n^5+3n^4+5n^3+2n^2+3n-1\).

Consider all possible values of P(n) mod 7 when \(0 \leq n \leq 6, n\in \mathbb Z\).

\(P(0) \equiv 6\pmod 7\\ P(1) \equiv 0 \pmod 7\\ P(2) \equiv 4 \pmod 7\\ P(3) \equiv 1 \pmod 7\\ P(4) \equiv 1 \pmod 7\\ P(5) \equiv 1\pmod 7\\ P(6) \equiv 1 \pmod 7\\ \)

Generally, \(P(7k + 1) \equiv 0 \pmod 7 \quad\forall \;k\in \mathbb Z^+\).

All possible values of n are: 8,15,22,29,36,43,50,57,64,71,78,85,92,99.

So there are 14 possible values of n such that \(235236_n\) is divisible by 7.

 Feb 2, 2019
 #2
avatar+7709 
+4

2.

\(AA_5 = 5A + A = 6A \quad \forall \; A \in [0,4] \land A\in \mathbb Z\\ BB_7 = 7B + B = 8B \quad \forall \; B \in [0,6] \land B\in \mathbb Z\)

From this, we know that the required base-10 integer must be divisible by both 6 and 8.

Least common multiple of 6 and 8 = 24.

So the answer is 24.

 

Check: \(24_{10} = 44_5 = 33_7\)

.
 Feb 2, 2019

5 Online Users