+0

# I need help!!

0
79
4

If f(a) = 2^(a+1), how can you write f(2a)?

Jun 10, 2022

#1
+1

Hi Guest!
You simply replace "a" with "2a"

Given: $$f(a)=2^{(a+1)}$$ (*)

Then,

$$f(2a)=2^{(2a+1)}$$

For example if you want: $$f(1000a)$$, all you do is replace "a" with 2a" in the given (*):

$$f(1000a)=2^{(1000a+1)}$$

Jun 10, 2022
#2
-1

The answers are one of these:

(1) 2f(a)

(2) f(a) /2

(3) 2* {f(a)}^2

(4) {f(a)}^2

(5) {f(a)}^2 /2

Which one is it?

Guest Jun 10, 2022
#3
+2

Continuing where the first answerer left off...

$${f(2a)}\ =\ 2^{(2a+1)}\\~\\ \phantom{f(2a)}\ =\ \frac{2}{2}\cdot2^{(2a+1)}\\~\\ \phantom{f(2a)}\ =\ \frac{2\ \cdot\ 2^{(2a+1)}}{2}\\~\\ \phantom{f(2a)}\ =\ \frac{2^1\ \cdot\ 2^{(2a+1)}}{2}\\~\\ \phantom{f(2a)}\ =\ \frac{2^{(2a+1)+1}}{2}\\~\\ \phantom{f(2a)}\ =\ \frac{2^{(2a+2)}}{2}\\~\\ \phantom{f(2a)}\ =\ \frac{2^{2(a+1)}}{2}\\~\\ \phantom{f(2a)}\ =\ \frac{(2^{(a+1)})^2}{2}\\~\\ \phantom{f(2a)}\ =\ \frac{(f(a))^2}{2}$$

Jun 10, 2022
#4
0

thanksssss

Guest Jun 10, 2022