+0

# I need help

0
86
1

Let line 1 be the graph of 5x+8y=-9. Line 2 is perpendicular to line 1 and passes through the point (10,10). If line 2 is the graph of the equation y=mx+b, then find. m+b

Jan 5, 2021

### Best Answer

#1
+1

1. First convert from standard form to slope intercept form .

\$5x+8y=-9\$

\$8y=-5x-9\$

\$y=-5/8-9/8\$

\$m=-5/8\$

2. find other line

Perpendicular lines have negative reciprocal slopes

\$-5/8 =>8/5\$

\$y=8/5x+b\$

From the given information,

\$(10)=8/5(10) + b\$

\$10=16+b\$

\$b=-6\$

the line is:

\$y=8/5x-6\$
therefore 8/5-6=\$-22/5\$

Jan 5, 2021

### 1+0 Answers

#1
+1
Best Answer

1. First convert from standard form to slope intercept form .

\$5x+8y=-9\$

\$8y=-5x-9\$

\$y=-5/8-9/8\$

\$m=-5/8\$

2. find other line

Perpendicular lines have negative reciprocal slopes

\$-5/8 =>8/5\$

\$y=8/5x+b\$

From the given information,

\$(10)=8/5(10) + b\$

\$10=16+b\$

\$b=-6\$

the line is:

\$y=8/5x-6\$
therefore 8/5-6=\$-22/5\$

Guest Jan 5, 2021