In hexagon ABCDEF, AB = DE = 2, BC = EF = 3, and CD = AF = 8, and all the interior angles are equal. Find the area of hexagon ABCDEF.
The answers are not 22sqrt3, 16sqrt3, 20sqrt3, or 27sqrt2.
Thank you!
If all the interior angles are equal, they must all be = 60°
So.....we have six equilateral triangles....and the area of any two triangles with the same side = (side^2) √ (3)/ 2
So...the area is
(2^2 + 3^2 + 8^2) *√3 /2 = 77√3 / 2
I have not looked much but the angles will all be 120 degrees.
Use cosine rule to find distance AE
triangle AFE and triangle DBC are congruent
so AE = BD
Area of AFE can be determined.
ABDE is a parallelogram. I am pretty sure it is a rectangle but i have not looked at it enough to be sure.
If it is a rectangle then the area is easily obtained.
That is a rough outline of some of the steps you will need to use.
In hexagon ABCDEF, AB = DE = 2, BC = EF = 3, and CD = AF = 8, and all the interior angles are equal.
Find the area of hexagon ABCDEF.
\(\begin{array}{|rcll|} \hline \mathbf{A} &=& \mathbf{\dbinom{0}{0}} \\\\ \mathbf{B} &=& 2\dbinom{\cos(120^\circ)}{\sin(120^\circ)}= \mathbf{\dbinom{-2\cos(60^\circ)}{2\sin(60^\circ)}} \\\\ \mathbf{C} &=& 3\dbinom{\cos(120^\circ-60^\circ)}{\sin(120^\circ-60^\circ)} + \mathbf{\dbinom{-2\cos(60^\circ)}{2\sin(60^\circ)}}\\ &=& \dbinom{3\cos(60^\circ)}{3\sin(60^\circ)}+\dbinom{-2\cos(60^\circ)}{2\sin(60^\circ)} = \mathbf{\dbinom{\cos(60^\circ)}{5\sin(60^\circ)}} \\\\ \mathbf{D} &=& 8\dbinom{\cos(120^\circ-120^\circ)}{\sin(120^\circ-120^\circ)} + \mathbf{\dbinom{\cos(60^\circ)}{5\sin(60^\circ)}} \\ &=& \dbinom{8\cos(0^\circ)}{8\sin(0^\circ)} + \dbinom{\cos(60^\circ)}{5\sin(60^\circ)} = \mathbf{ \dbinom{8+\cos(60^\circ)}{5\sin(60^\circ) } } \\\\ \mathbf{E} &=& 2\dbinom{\cos(120^\circ-180^\circ)}{\sin(120^\circ-180^\circ)} + \mathbf{ \dbinom{8+\cos(60^\circ)}{5\sin(60^\circ) } } \\ &=& \dbinom{2\cos(60^\circ)}{-2\sin(60^\circ)} + \dbinom{8+\cos(60^\circ)}{5\sin(60^\circ)} = \mathbf{ \dbinom{8+3\cos(60^\circ)}{3\sin(60^\circ) } } \\\\ \mathbf{F} &=& 3\dbinom{\cos(120^\circ-240^\circ)}{\sin(120^\circ-240^\circ)} + \mathbf{ \dbinom{8+3\cos(60^\circ)}{3\sin(60^\circ) } } \\ &=& \dbinom{-3\cos(60^\circ)}{-3\sin(60^\circ)} + \dbinom{8+3\cos(60^\circ)}{3\sin(60^\circ) } = \mathbf{\dbinom{8}{0}} \\ \hline \end{array}\)
The area of hexagon ABCDEF
\(\begin{array}{|crr|} \hline \text{Point} & x & y \\ \hline A & 0 & 0 \\ B & -2\cos(60^\circ) & 2\sin(60^\circ) \\ C & \cos(60^\circ) & 5\sin(60^\circ) \\ D & 8+\cos(60^\circ) & 5\sin(60^\circ) \\ E & 8+3\cos(60^\circ) & 3\sin(60^\circ) \\ F & 8 & 0 \\ A & 0 & 0 \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline 2F &=& -2\cos(60^\circ)5\sin(60^\circ)-\cos(60^\circ)2\sin(60^\circ) \\ &+& \cos(60^\circ)5\sin(60^\circ)-(8+\cos(60^\circ))5\sin(60^\circ) \\ &+& (8+\cos(60^\circ))3\sin(60^\circ)-(8+3\cos(60^\circ))5\sin(60^\circ) \\ &+& (8+3\cos(60^\circ))*0-8*3\sin(60^\circ) \\\\ 2F &=& -10\sin(60^\circ)\cos(60^\circ)-2\sin(60^\circ)\cos(60^\circ) \\ &+& 5\sin(60^\circ)\cos(60^\circ)-40\sin(60^\circ)-5\sin(60^\circ))\cos(60^\circ) \\ &+& 24\sin(60^\circ)+3\sin(60^\circ)\cos(60^\circ)-40\sin(60^\circ)-15\sin(60^\circ)\cos(60^\circ) \\ &-& 24\sin(60^\circ) \\\\ 2F &=& -10\sin(60^\circ)\cos(60^\circ)-2\sin(60^\circ)\cos(60^\circ) -40\sin(60^\circ) \\ &+& 3\sin(60^\circ)\cos(60^\circ)-40\sin(60^\circ)-15\sin(60^\circ)\cos(60^\circ) \\\\ 2F &=& -24\sin(60^\circ)\cos(60^\circ) - 80\sin(60^\circ) \quad | \quad \cos(60^\circ) = \dfrac{1}{2} \\ 2F &=& -24\sin(60^\circ)\dfrac{1}{2} - 80\sin(60^\circ) \\ 2F &=& -12\sin(60^\circ)- 80\sin(60^\circ) \\ 2F &=& -92\sin(60^\circ) \quad | \quad : 2 \\ F &=& -46\sin(60^\circ) \quad | \quad \sin(60^\circ) = \dfrac{\sqrt{3}}{2} \\ F &=& -46\dfrac{\sqrt{3}}{2} \\ F &=& |-23 \sqrt{3}| \\ \mathbf{F} &=& \mathbf{23 \sqrt{3}} \\ \hline \end{array}\)