I need to get a formula for "x" from:
\(f=nw+\frac{l}{d}(d-2x-z)+m-\sqrt{w}\)
Please help :(
I need to get a formula for "x" from:
\(\small{ f=nw+\frac{l}{d}(d-2x-z)+m-\sqrt{w} }\)
Please help :(
\(\small{ \begin{array}{rcll} f &=& nw+\frac{l}{d}(d-2x-z)+m-\sqrt{w} & | \quad +\sqrt{w} \\ f +\sqrt{w} &=& nw+\frac{l}{d}(d-2x-z)+m & | \quad -m \\ f +\sqrt{w} - m &=& nw+\frac{l}{d}(d-2x-z) & | \quad -nw \\ f +\sqrt{w} - m -nw &=& \frac{l}{d}(d-2x-z) & | \quad \cdot \frac{d}{l} \\ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l} &=& d-2x-z & | \quad +z \\ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z &=& d-2x & | \quad -d \\ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z-d &=& -2x & | \quad :(-2) \\ \frac{ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z-d }{-2} &=& x \\ x &=& \frac{ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z-d }{-2}\\ x &=& -\frac{ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z-d }{2}\\ x &=& \frac{ -( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}-z+d }{2}\\ \mathbf{x} &\mathbf{=}& \mathbf{\frac{ d-z-( f +\sqrt{w} - m -nw )\cdot \frac{d}{l} }{2} } \end{array} }\)
I need to get a formula for "x" from:
\(\small{ f=nw+\frac{l}{d}(d-2x-z)+m-\sqrt{w} }\)
Please help :(
\(\small{ \begin{array}{rcll} f &=& nw+\frac{l}{d}(d-2x-z)+m-\sqrt{w} & | \quad +\sqrt{w} \\ f +\sqrt{w} &=& nw+\frac{l}{d}(d-2x-z)+m & | \quad -m \\ f +\sqrt{w} - m &=& nw+\frac{l}{d}(d-2x-z) & | \quad -nw \\ f +\sqrt{w} - m -nw &=& \frac{l}{d}(d-2x-z) & | \quad \cdot \frac{d}{l} \\ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l} &=& d-2x-z & | \quad +z \\ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z &=& d-2x & | \quad -d \\ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z-d &=& -2x & | \quad :(-2) \\ \frac{ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z-d }{-2} &=& x \\ x &=& \frac{ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z-d }{-2}\\ x &=& -\frac{ ( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}+z-d }{2}\\ x &=& \frac{ -( f +\sqrt{w} - m -nw )\cdot \frac{d}{l}-z+d }{2}\\ \mathbf{x} &\mathbf{=}& \mathbf{\frac{ d-z-( f +\sqrt{w} - m -nw )\cdot \frac{d}{l} }{2} } \end{array} }\)