+0

# i need you helllp

0
62
5

Find sin(2x), cos(2x), and tan(2x) from the given information. sec(x) = 4, x in Quadrant IV

sin(2x) =

cos(2x) =

tan(2x) =

Apr 8, 2020

### 5+0 Answers

#1
+1968
+2
Apr 8, 2020
#2
0

i cant faound it but thanks anyway

Guest Apr 8, 2020
#3
+9472
+1

Find sin(2x), cos(2x), and tan(2x) from the given information. sec(x) = 4, x in Quadrant IV

sin(2x) =

cos(2x) =

tan(2x) =

Hello Guest!

$$sin(2x)=2sin(x)cos(x)=2\frac{\pm \sqrt{sec^2(x)-1}}{sec(x)}\times\frac{1}{sec(4)}\\ sin(2x) =2\frac{-\sqrt{4^2-1}}{4}\times\frac{1}{4}\\$$

$$sin(2x)_{sec(x)=4}=-0.4841$$

$$cos(2x)=2cos^2(x)-1=2\times \frac{1}{sec^2(x)}-1\\ cos(2x)=2\times \frac{1}{4^2}-1\\$$

$$cos(2x)_{sec(x)=4}=-0.875$$

$$tan(2x)=\frac{2tan(x)}{1-tan^2(x)}=\frac{2\cdot (\pm\sqrt{sec^2(x)-1})}{1-(sec^2(x)-1)}$$

$$tan(2x)=\frac{2\times (-\sqrt{4^2-1})}{1-(4^2-1)}$$

$$tan(2x)_{sec(x)=4}=0.55328$$

!

Apr 8, 2020
edited by asinus  Apr 8, 2020
edited by asinus  Apr 8, 2020
#4
+1

thank u

Guest Apr 8, 2020
#5
+9472
+1

Hi Guest,

thanks for your "thank u"! That rarely happens.

!

asinus  Apr 8, 2020