+0  
 
0
62
5
avatar

Find sin(2x), cos(2x), and tan(2x) from the given information. sec(x) = 4, x in Quadrant IV

sin(2x) =

cos(2x) =

tan(2x) =

 Apr 8, 2020
 #1
 #2
avatar
0

i cant faound it but thanks anyway 

Guest Apr 8, 2020
 #3
avatar+9472 
+1

Find sin(2x), cos(2x), and tan(2x) from the given information. sec(x) = 4, x in Quadrant IV

sin(2x) =

cos(2x) =

tan(2x) =

 

Hello Guest!

 

\(sin(2x)=2sin(x)cos(x)=2\frac{\pm \sqrt{sec^2(x)-1}}{sec(x)}\times\frac{1}{sec(4)}\\ sin(2x) =2\frac{-\sqrt{4^2-1}}{4}\times\frac{1}{4}\\\)

\(sin(2x)_{sec(x)=4}=-0.4841\)

 

\(cos(2x)=2cos^2(x)-1=2\times \frac{1}{sec^2(x)}-1\\ cos(2x)=2\times \frac{1}{4^2}-1\\\)

\(cos(2x)_{sec(x)=4}=-0.875\)

 

\(tan(2x)=\frac{2tan(x)}{1-tan^2(x)}=\frac{2\cdot (\pm\sqrt{sec^2(x)-1})}{1-(sec^2(x)-1)}\)

\(tan(2x)=\frac{2\times (-\sqrt{4^2-1})}{1-(4^2-1)}\)

\(tan(2x)_{sec(x)=4}=0.55328\)

laugh  !

 Apr 8, 2020
edited by asinus  Apr 8, 2020
edited by asinus  Apr 8, 2020
 #4
avatar
+1

thank u

Guest Apr 8, 2020
 #5
avatar+9472 
+1

Hi Guest,

thanks for your "thank u"! That rarely happens.

laugh  !

asinus  Apr 8, 2020

22 Online Users