Square ABCD has area 12.25.
E is the intersection of BD and the semicircle of diameter AD.
CF is a segment drawn from C and tangnet to the semicircle at F.
Find the area of triangle DEF.
Square ABCD has area 12.25.
E is the intersection of BD and the semicircle of diameter AD.
CF is a segment drawn from C and tangnet to the semicircle at F.
Find the area of triangle DEF.
Point E: Intersection circle and line BDyE=−xE+2ry2E=2rxE−x2E(−xE+2r)2=2rxE−x2Ex2E−4rxE+4r2=2rxE−x2E2x2E−6rxE+4r2=0|:2x2E−3rxE+2r2=0x2E=3r±√9r2−4∗(2r2)2x2E=3r±√r22x2E=3r±r2xE=3r−r2xE=2r2xE=r ✓xE=3r+r2xE=4r2xE=2r|Pont E ≠ Pont DyE=−xE+2r|xE=ryE=−r+2ryE=r ✓E=(r,r)
MH:r2=MH∗CM|CM=r√5r2=MH∗r√5r=MH√5MH=r√5FH:FH2=MH∗(CM−MH)MH=r√5, CM=r√5FH2=r√5∗(r√5−r√5)FH2=r2−r25FH2=4r25FH=2r√5
xF:FD2=(AD−xF)∗AD|FD=2FH, AD=2r(2FH)2=(2r−xF)∗2r|FH=2r√5(4r√5)2=(2r−xF)∗2r16r25=4r2−2rxF2rxF=4r2−16r25|:2rxF=2r−8r5xF=2r5
yF:y2F=xF(AD−xF)|xF=2r5, AD=2ry2F=2r5(2r−2r5)y2F=4r25−4r225y2F=20r25−4r225y2F=16r225yF=4r5
F=(2r5,4r5)
The area of triangle DEF:Pointxycross productD:2r0E:rr2r∗r−r∗0F:2r54r5r∗4r5−2r5∗rD:2r02r5∗0−2r∗4r5sum =2r2+4r25−2r25−8r25=2r2(1+25−15−4r5)=2r2(1+25−1)=2r2(25)=4r25
The area of triangle DEF=sum2=4r252=2r25Square ABCD=AB∗AD|AB=AD=2rSquare ABCD=(2r)2Square ABCD=4r2|Square ABCD=12.2512.25=4r2|:43.0625=r2r2=3.0625=2∗3.06255The area of triangle DEF=1.225
Source: https://en.wikipedia.org/wiki/Geometric_mean_theorem
https://www.youtube.com/watch?v=AByG1nTvA_Q
Square ABCD has area 12.25.
E is the intersection of BD and the semicircle of diameter AD.
CF is a segment drawn from C and tangnet to the semicircle at F.
Find the area of triangle DEF.
Point E: Intersection circle and line BDyE=−xE+2ry2E=2rxE−x2E(−xE+2r)2=2rxE−x2Ex2E−4rxE+4r2=2rxE−x2E2x2E−6rxE+4r2=0|:2x2E−3rxE+2r2=0x2E=3r±√9r2−4∗(2r2)2x2E=3r±√r22x2E=3r±r2xE=3r−r2xE=2r2xE=r ✓xE=3r+r2xE=4r2xE=2r|Pont E ≠ Pont DyE=−xE+2r|xE=ryE=−r+2ryE=r ✓E=(r,r)
MH:r2=MH∗CM|CM=r√5r2=MH∗r√5r=MH√5MH=r√5FH:FH2=MH∗(CM−MH)MH=r√5, CM=r√5FH2=r√5∗(r√5−r√5)FH2=r2−r25FH2=4r25FH=2r√5
xF:FD2=(AD−xF)∗AD|FD=2FH, AD=2r(2FH)2=(2r−xF)∗2r|FH=2r√5(4r√5)2=(2r−xF)∗2r16r25=4r2−2rxF2rxF=4r2−16r25|:2rxF=2r−8r5xF=2r5
yF:y2F=xF(AD−xF)|xF=2r5, AD=2ry2F=2r5(2r−2r5)y2F=4r25−4r225y2F=20r25−4r225y2F=16r225yF=4r5
F=(2r5,4r5)
The area of triangle DEF:Pointxycross productD:2r0E:rr2r∗r−r∗0F:2r54r5r∗4r5−2r5∗rD:2r02r5∗0−2r∗4r5sum =2r2+4r25−2r25−8r25=2r2(1+25−15−4r5)=2r2(1+25−1)=2r2(25)=4r25
The area of triangle DEF=sum2=4r252=2r25Square ABCD=AB∗AD|AB=AD=2rSquare ABCD=(2r)2Square ABCD=4r2|Square ABCD=12.2512.25=4r2|:43.0625=r2r2=3.0625=2∗3.06255The area of triangle DEF=1.225
source:
https://en.wikipedia.org/wiki/Geometric_mean_theorem
https://www.youtube.com/watch?v=AByG1nTvA_Q