+0  
 
0
163
3
avatar

I want to caculate 11power 850 mod 1643 

Guest Apr 8, 2017
Sort: 

3+0 Answers

 #1
avatar
0

Do you mean: 11^850 mod 1,643? If so, the answer is: 11^850 mod 1,643 =811

Guest Apr 8, 2017
 #2
avatar
0

You have to have a calculator that keeps the fractional part of an integer, when dividing by a number: Frac[11^850 / 1,643] =0.49360925136944613511868533171029 x 1,643=811

Guest Apr 8, 2017
 #3
avatar+18610 
+2

I want to caculate 11power 850 mod 1643 

 

\(\begin{array}{|rcll|} \hline && 11^{850} \pmod{1643} \\ & \equiv & 11^{4\cdot 212+2} \pmod{1643} \\ & \equiv & (11^4)^{212}\cdot 121 \pmod{1643} \quad & | \quad 11^4\pmod{1643} &\equiv& -146 \pmod{1643} \\ & \equiv & (-146)^{212}\cdot 121 \pmod{1643} \\ & \equiv & (-146)^{2\cdot 106}\cdot 121 \pmod{1643} \\ & \equiv & [(-146)^2]^{106}\cdot 121 \pmod{1643} \quad & | \quad (-146)^2\pmod{1643} &\equiv& -43 \pmod{1643} \\ & \equiv & (-43)^{106}\cdot 121 \pmod{1643} \\ & \equiv & (-43)^{4\cdot 26+2}\cdot 121 \pmod{1643} \\ & \equiv & [(-43)^4]^{26}\cdot (-43)^2 \cdot 121 \pmod{1643} \quad & | \quad (-43)^4 \pmod{1643} &\equiv& -282 \pmod{1643} \\ & \equiv & (-282)^{26}\cdot (-43)^2 \cdot 121 \pmod{1643} \quad & | \quad (-43)^2 \pmod{1643} &\equiv& 206 \pmod{1643} \\ & \equiv & (-282)^{26}\cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & (-282)^{2\cdot 13}\cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & [(-282)^2]^{13} \cdot 206 \cdot 121 \pmod{1643} \quad & | \quad (-282)^2 \pmod{1643} &\equiv& 660 \pmod{1643} \\ & \equiv & 660^{13} \cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & 660^{2\cdot6 + 1} \cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & (660^2)^6\cdot 660 \cdot 206 \cdot 121 \pmod{1643} \quad & | \quad 660^2\pmod{1643} &\equiv& 205 \pmod{1643} \\ & \equiv & 205^6\cdot 660 \cdot 206 \cdot 121 \pmod{1643} \quad & | \quad 660 \cdot 206 \cdot 121\pmod{1643} &\equiv& -199 \pmod{1643} \\ & \equiv & 205^6\cdot (-199) \pmod{1643} \\ & \equiv & 205^{2\cdot 3}\cdot (-199) \pmod{1643} \\ & \equiv & (205^2)^3\cdot (-199) \pmod{1643} \quad & | \quad 205^2\pmod{1643} &\equiv& -693 \pmod{1643} \\ & \equiv & (-693)^3\cdot (-199) \pmod{1643} \\ & \equiv & (-693)^{2+1}\cdot (-199) \pmod{1643} \\ & \equiv & (-693)^2\cdot(-693)\cdot (-199) \pmod{1643} \quad & | \quad (-693)\cdot (-199)\pmod{1643} &\equiv& -105 \pmod{1643} \\ & \equiv & (-693)^2\cdot(-105) \pmod{1643} \quad & | \quad (-693)^2\pmod{1643} &\equiv& 493 \pmod{1643} \\ & \equiv & 493\cdot(-105) \pmod{1643} \\ & \equiv & 493\cdot(-105) \pmod{1643} \quad & | \quad 493\cdot(-105) \pmod{1643} &\equiv& -832 \pmod{1643} &\equiv& 811 \pmod{1643} \\ & \equiv & 811 \pmod{1643} \\ \hline \end{array}\)

 

laugh

heureka  Apr 10, 2017

13 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details