+0  
 
0
403
3
avatar

I want to caculate 11power 850 mod 1643 

Guest Apr 8, 2017
 #1
avatar
0

Do you mean: 11^850 mod 1,643? If so, the answer is: 11^850 mod 1,643 =811

Guest Apr 8, 2017
 #2
avatar
0

You have to have a calculator that keeps the fractional part of an integer, when dividing by a number: Frac[11^850 / 1,643] =0.49360925136944613511868533171029 x 1,643=811

Guest Apr 8, 2017
 #3
avatar+20025 
+2

I want to caculate 11power 850 mod 1643 

 

\(\begin{array}{|rcll|} \hline && 11^{850} \pmod{1643} \\ & \equiv & 11^{4\cdot 212+2} \pmod{1643} \\ & \equiv & (11^4)^{212}\cdot 121 \pmod{1643} \quad & | \quad 11^4\pmod{1643} &\equiv& -146 \pmod{1643} \\ & \equiv & (-146)^{212}\cdot 121 \pmod{1643} \\ & \equiv & (-146)^{2\cdot 106}\cdot 121 \pmod{1643} \\ & \equiv & [(-146)^2]^{106}\cdot 121 \pmod{1643} \quad & | \quad (-146)^2\pmod{1643} &\equiv& -43 \pmod{1643} \\ & \equiv & (-43)^{106}\cdot 121 \pmod{1643} \\ & \equiv & (-43)^{4\cdot 26+2}\cdot 121 \pmod{1643} \\ & \equiv & [(-43)^4]^{26}\cdot (-43)^2 \cdot 121 \pmod{1643} \quad & | \quad (-43)^4 \pmod{1643} &\equiv& -282 \pmod{1643} \\ & \equiv & (-282)^{26}\cdot (-43)^2 \cdot 121 \pmod{1643} \quad & | \quad (-43)^2 \pmod{1643} &\equiv& 206 \pmod{1643} \\ & \equiv & (-282)^{26}\cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & (-282)^{2\cdot 13}\cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & [(-282)^2]^{13} \cdot 206 \cdot 121 \pmod{1643} \quad & | \quad (-282)^2 \pmod{1643} &\equiv& 660 \pmod{1643} \\ & \equiv & 660^{13} \cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & 660^{2\cdot6 + 1} \cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & (660^2)^6\cdot 660 \cdot 206 \cdot 121 \pmod{1643} \quad & | \quad 660^2\pmod{1643} &\equiv& 205 \pmod{1643} \\ & \equiv & 205^6\cdot 660 \cdot 206 \cdot 121 \pmod{1643} \quad & | \quad 660 \cdot 206 \cdot 121\pmod{1643} &\equiv& -199 \pmod{1643} \\ & \equiv & 205^6\cdot (-199) \pmod{1643} \\ & \equiv & 205^{2\cdot 3}\cdot (-199) \pmod{1643} \\ & \equiv & (205^2)^3\cdot (-199) \pmod{1643} \quad & | \quad 205^2\pmod{1643} &\equiv& -693 \pmod{1643} \\ & \equiv & (-693)^3\cdot (-199) \pmod{1643} \\ & \equiv & (-693)^{2+1}\cdot (-199) \pmod{1643} \\ & \equiv & (-693)^2\cdot(-693)\cdot (-199) \pmod{1643} \quad & | \quad (-693)\cdot (-199)\pmod{1643} &\equiv& -105 \pmod{1643} \\ & \equiv & (-693)^2\cdot(-105) \pmod{1643} \quad & | \quad (-693)^2\pmod{1643} &\equiv& 493 \pmod{1643} \\ & \equiv & 493\cdot(-105) \pmod{1643} \\ & \equiv & 493\cdot(-105) \pmod{1643} \quad & | \quad 493\cdot(-105) \pmod{1643} &\equiv& -832 \pmod{1643} &\equiv& 811 \pmod{1643} \\ & \equiv & 811 \pmod{1643} \\ \hline \end{array}\)

 

laugh

heureka  Apr 10, 2017

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.