+0  
 
0
1526
4
avatar+546 

26)Suppose you deposit $ 2000 in a savings account that pays interest at an annual rate of 4%. If no money is added or withdrawn from the account, answer the following questions.

a. how much will be in the account after 3 years

b. how much will be in the account after 18 years

c. how many years will it take for the account to contain $2500

d. how many years to contain $3000

 

28)  write an exponential function to model the situation. find the amount

a polulation of 1,860,000 decreases 1.5% each year for 12 years

 Aug 12, 2014

Best Answer 

 #3
avatar+129898 
+10

a) is this

A = 2000(1.04)3  ≈ $2249.73   ......where A is the amount after 3 years

b)   is similar, Nataszaa....just substitute "18' for the exponent of "3"

---------------------------------------------------------------------------------------------------

c) so we have

2500 = 2000(1.04)t    .......we are trying to find "t"......

First, divide both sides by 2000

2500/2000 = (1.04)t   .......simplify this on the left

5/4 = (1.04)t              ........take the log of both sides

log(5/4) = log(1.04)t    ........and by a property of logs, we can bring the "t" "out front"

log(5/4) = t log(1.04)   .........divide both sides by log(1.04)

log(5/4)/log(1.04)  = t = about 5.7 years

 

d) is similar.....just replace "2500" with "3000" and follow the same steps....

----------------------------------------------------------------------------------------------------

28)    P = 1,860,000(.984)12    .....where P is the population after 12 years.....

----------------------------------------------------------------------------------------------------

And there you go, Nataszaa.....

 

 Aug 13, 2014
 #1
avatar+118680 
+5

26) Just use the compound int formula

FV=P(1+r)^n

where P=2000

n=number of years

r=0.04

 Aug 13, 2014
 #2
avatar+546 
0

i need an answer for a b c d and #28

 Aug 13, 2014
 #3
avatar+129898 
+10
Best Answer

a) is this

A = 2000(1.04)3  ≈ $2249.73   ......where A is the amount after 3 years

b)   is similar, Nataszaa....just substitute "18' for the exponent of "3"

---------------------------------------------------------------------------------------------------

c) so we have

2500 = 2000(1.04)t    .......we are trying to find "t"......

First, divide both sides by 2000

2500/2000 = (1.04)t   .......simplify this on the left

5/4 = (1.04)t              ........take the log of both sides

log(5/4) = log(1.04)t    ........and by a property of logs, we can bring the "t" "out front"

log(5/4) = t log(1.04)   .........divide both sides by log(1.04)

log(5/4)/log(1.04)  = t = about 5.7 years

 

d) is similar.....just replace "2500" with "3000" and follow the same steps....

----------------------------------------------------------------------------------------------------

28)    P = 1,860,000(.984)12    .....where P is the population after 12 years.....

----------------------------------------------------------------------------------------------------

And there you go, Nataszaa.....

 

CPhill Aug 13, 2014
 #4
avatar+546 
0

Sweet! thank you CPhill!

 Aug 13, 2014

4 Online Users

avatar
avatar