+0  
 
0
264
2
avatar

850e^(0.055x)=195e^(0.075x)

Guest Mar 20, 2017
 #1
avatar
0

Solve for x over the real numbers:
850 e^(0.055 x) = 195 e^(0.075 x)

850 e^(0.055 x) = 850 e^(11 x/200) and 195 e^(0.075 x) = 195 e^(3 x/40):
850 e^((11 x)/200) = 195 e^((3 x)/40)

Take the natural logarithm of both sides and use the identities log(a b) = log(a) + log(b) and log(a^b) = b log(a):
(11 x)/200 + log(850) = (3 x)/40 + log(195)

Subtract (3 x)/40 + log(850) from both sides:
-x/50 = log(195) - log(850)

Multiply both sides by -50:
Answer: | x = 50 log(850) - 50 log(195)= 73.61183954603077.......

Guest Mar 20, 2017
 #2
avatar+19653 
0

850e^(0.055x)=195e^(0.075x)

 

\(\begin{array}{|rcll|} \hline 850\cdot e^{0.055x} &=& 195\cdot e^{0.075x} \quad & | \quad : 195 \\ \frac{850}{195} \cdot e^{0.055x} &=& e^{0.075x} \quad & | \quad \cdot e^{-0.055x} \\ \frac{850}{195} &=& e^{0.075x} \cdot e^{-0.055x} \\ \frac{850}{195} &=& e^{0.075x-0.055x} \\ \frac{850}{195} &=& e^{0.02x} \\ \frac{170}{39} &=& e^{0.02x} \quad & | \quad \text{ln of both sides } \\ \ln(\frac{170}{39}) &=& \ln(e^{0.02x}) \\ \ln(\frac{170}{39}) &=& 0.02x\cdot \ln(e) \quad & | \quad \ln(e) = 1 \\ \ln(\frac{170}{39}) &=& 0.02x \quad & | \quad : 0.02 \\ \frac{ \ln(\frac{170}{39}) } {0.02} &=& x \\ \frac{ \ln(4.35897435897) } {0.02} &=& x \\ \frac{ 1.47223679092 } {0.02} &=& x \\ 73.6118395460 &=& x \\ \hline \end{array}\)

 

laugh

heureka  Mar 20, 2017

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.