+0  
 
0
1291
2
avatar
If (a^2 +b^2)^3=(a^3+b^3)^2 then the numerical value of a/b + b/a is equal to x. Find the value of x.
Guest May 4, 2015

Best Answer 

 #2
avatar+26973 
+10

 a/b + b/a

 

heureka beat me to it!

.

Alan  May 4, 2015
 #1
avatar+20011 
+10

If then the numerical value of a/b + b/a is equal to x. Find the value of x.

$$\small{\text{$
\begin{array}{rcll}
(a^2 +b^2)^3 &=& (a^3+b^3)^2 \\
(a^2)^3+3\cdot(a^2)^2\cdot (b^2)^1 +3\cdot (a^2)^1\cdot (b^2)^2 + (b^2)^3 &=& (a^3)^2 + 2\cdot(a^3)^1\cdot (b^3)^1 + (b^3)^2\\
a^6+3\cdot a^4\cdot b^2 +3\cdot a^2\cdot b^4 + b^6 &=& a^6 + 2\cdot a^3\cdot b^3 + b^6\\
\not{a^6}+3\cdot a^4\cdot b^2 +3\cdot a^2\cdot b^4 + \not{b^6} &=& \not{a^6} + 2\cdot a^3\cdot b^3 + \not{b^6}\\
3\cdot a^4\cdot b^2 +3\cdot a^2\cdot b^4 &=& 2\cdot a^3\cdot b^3 \\
3\cdot a^4\cdot b^2 +3\cdot a^2\cdot b^4 &=& 2\cdot a^3\cdot b^3 & | \quad : (a^3\cdot b^3) \\
3\cdot\frac{ a }{ b }+3\cdot \frac{ b } { a } &=& 2 \\
3\cdot\frac{ a }{ b }+3\cdot \frac{ b } { a } &=& 2 & | \quad : 3 \\
\frac{ a }{ b }+ \frac{ b } { a } &=& \frac{2}{3}
\end{array}
$}}\\
\mathbf{x=\dfrac{ a }{ b }+ \dfrac{ b } { a } &=& \dfrac{2}{3} }$$

heureka  May 4, 2015
 #2
avatar+26973 
+10
Best Answer

 a/b + b/a

 

heureka beat me to it!

.

Alan  May 4, 2015

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.