If a and b are the solutions to the equation x^2 - 5x + 9= 0, what is the value of (a - 1)(b - 1)?
x^2 - 5x + 9= 0 from the quadratic formula, we have that the solutions are....
x = [5 + i*sqrt(11)] 2 and [5 - i*sqrt(11)]/ 2 so
[ (5 + i*sqrt(11))/2 - 1] * [ (5 + i*sqrt(11))/2 - 1] =
[ 3 + i*sqrt(11)] /2 * [ 3 - i*sqrt(11)]/2 =
[ 9 - i^2 *(11)]/4 =
[9 - (-1)(11)]/ 4 =
20 / 4=
5
If a and b are the solutions to the equation x^2 - 5x + 9= 0, what is the value of (a - 1)(b - 1)?
(1/2 (5-i sqrt(11))-1)* (1/2 (5+i sqrt(11))-1)=5
x^2 - 5x + 9= 0 from the quadratic formula, we have that the solutions are....
x = [5 + i*sqrt(11)] 2 and [5 - i*sqrt(11)]/ 2 so
[ (5 + i*sqrt(11))/2 - 1] * [ (5 + i*sqrt(11))/2 - 1] =
[ 3 + i*sqrt(11)] /2 * [ 3 - i*sqrt(11)]/2 =
[ 9 - i^2 *(11)]/4 =
[9 - (-1)(11)]/ 4 =
20 / 4=
5