+0  
 
+5
1930
2
avatar+1314 

If a and b are the solutions to the equation x^2 - 5x + 9= 0, what is the value of (a - 1)(b - 1)?

 Sep 27, 2015

Best Answer 

 #2
avatar+129852 
+5

x^2 - 5x + 9= 0   from the quadratic formula, we have that the solutions are....

 

x = [5 + i*sqrt(11)] 2  and  [5 - i*sqrt(11)]/ 2   so

 

[ (5 + i*sqrt(11))/2  - 1] * [ (5 + i*sqrt(11))/2  - 1]  =

 

[ 3 + i*sqrt(11)] /2 *  [ 3 - i*sqrt(11)]/2 =

 

[ 9 - i^2 *(11)]/4  =

 

[9 - (-1)(11)]/ 4 =

 

20 / 4=

 

5

 

 

cool cool cool

 Sep 27, 2015
 #1
avatar
+6

If a and b are the solutions to the equation x^2 - 5x + 9= 0, what is the value of (a - 1)(b - 1)?

 

(1/2 (5-i sqrt(11))-1)* (1/2 (5+i sqrt(11))-1)=5

 Sep 27, 2015
 #2
avatar+129852 
+5
Best Answer

x^2 - 5x + 9= 0   from the quadratic formula, we have that the solutions are....

 

x = [5 + i*sqrt(11)] 2  and  [5 - i*sqrt(11)]/ 2   so

 

[ (5 + i*sqrt(11))/2  - 1] * [ (5 + i*sqrt(11))/2  - 1]  =

 

[ 3 + i*sqrt(11)] /2 *  [ 3 - i*sqrt(11)]/2 =

 

[ 9 - i^2 *(11)]/4  =

 

[9 - (-1)(11)]/ 4 =

 

20 / 4=

 

5

 

 

cool cool cool

CPhill Sep 27, 2015

1 Online Users

avatar