+0  
 
0
2808
1
avatar
if a+b=5 and a^3+b^3=20 then find an equation whose roots are a and b.
 Aug 28, 2013
 #1
avatar+259 
0
a^3+b^3=20, using the formula of sum of cubes, we get (a + b)(a^2 - ab + b^2) = 20 => 5(a^2 - ab + b^2) = 20 => (a^2 - ab + b^2) = 4. Completing the square we have a^2 - ab + b^2 +2ab - 2ab = 4 => (a + b)^2 - 3ab = 4 => 5^2 - 3ab = 4 => 25 - 3ab = 4 => 3ab = 21 => ab = 7. Arrived at the simplest system ab = 7, a + b = 5


[input]solve(ab = 7, a + b = 5,a,b)[/input]

This equation has no roots (Discriminant of the intermediary quadratic equation is a negative number.)
 Aug 28, 2013

5 Online Users

avatar
avatar
avatar