+0  
 
0
3229
2
avatar+257 

If a,b,c are in A.P, then prove that -

(a+2b-c)(2b+c-a)(c+a-b)=4abc

 Apr 29, 2016
 #1
avatar+130071 
0

(a+2b-c)(2b+c-a)(c+a-b)=4abc

 

If a, b, a are in A.P.    ....we have that......

 

a = a

b = a + d

c = a + 2d

 

(a+2b-c)(2b+c-a)(c+a-b)=4abc

 

[ a + 2(a + d) - (a + 2d] [ 2(a + d) + (a + 2d) - a ] [ (a + 2d) + a - (a + d) ]  = 4[a][a + d] [a + 2d]

 

[ 2a] [ 2a + 4d] [ a + d ]  =  4a [a^2 + 3ad + 2d^2]

 

[ 4a^2 + 8ad] [ a + d ]  =   4a^3  + 12a^2d + 8ad^2

 

4a^3 + 8a^2d + 4a^2d + 8ad^2  = 4a^3  + 12a^2d + 8ad^2

 

4a^3 + 12a^2d + 8ad^2  = 4a^3 + 12a^2d + 8ad^2

 

 

cool cool cool

 Apr 29, 2016
 #2
avatar+257 
0

spectacular!!!!!!!!!!!!surprisesmileylaughcool

AaratrikRoy  Apr 30, 2016

2 Online Users