If a,b,c are in A.P, then prove that -
(a+2b-c)(2b+c-a)(c+a-b)=4abc
(a+2b-c)(2b+c-a)(c+a-b)=4abc
If a, b, a are in A.P. ....we have that......
a = a
b = a + d
c = a + 2d
(a+2b-c)(2b+c-a)(c+a-b)=4abc
[ a + 2(a + d) - (a + 2d] [ 2(a + d) + (a + 2d) - a ] [ (a + 2d) + a - (a + d) ] = 4[a][a + d] [a + 2d]
[ 2a] [ 2a + 4d] [ a + d ] = 4a [a^2 + 3ad + 2d^2]
[ 4a^2 + 8ad] [ a + d ] = 4a^3 + 12a^2d + 8ad^2
4a^3 + 8a^2d + 4a^2d + 8ad^2 = 4a^3 + 12a^2d + 8ad^2
4a^3 + 12a^2d + 8ad^2 = 4a^3 + 12a^2d + 8ad^2