We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
204
7
avatar+129 

If A is one greater than B, what is A^2 - B^2, in terms of A and B?

 Oct 21, 2018
edited by MATHEXPERTISE  Oct 21, 2018

Best Answer 

 #2
avatar+18846 
+2

GIVEN  : A = B+1

Then

 

A^2 - B^2 =   (B+1)^2  - B^2 = B^2 +2B +1 - B^2   = 2B+1

 

A^2 - B^2 =    2B+1

 

        cheeky

 Oct 21, 2018
edited by ElectricPavlov  Oct 21, 2018
 #1
avatar
0

Not sure if I understand your question:

But, if (A + 1) = B, then:

 

Solve for A:
(A + 1)^2 - B^2 = 0

The left hand side factors into a product with two terms:
(1 + A - B) (1 + A + B) = 0

Split into two equations:
1 + A - B = 0 or 1 + A + B = 0

Subtract 1 - B from both sides:
A = B - 1 or 1 + A + B = 0

Subtract B + 1 from both sides:

A = B - 1 or A = -B - 1                           OR:                       B=+or-(A + 1)

CPhill: Please check this out. Thanks.

 Oct 21, 2018
edited by Guest  Oct 21, 2018
 #3
avatar+18846 
+1

Note to Guest.....         A = B+1        AND    it does not say   A^2 - B^2 = 0     

ElectricPavlov  Oct 21, 2018
 #2
avatar+18846 
+2
Best Answer

GIVEN  : A = B+1

Then

 

A^2 - B^2 =   (B+1)^2  - B^2 = B^2 +2B +1 - B^2   = 2B+1

 

A^2 - B^2 =    2B+1

 

        cheeky

ElectricPavlov Oct 21, 2018
edited by ElectricPavlov  Oct 21, 2018
 #4
avatar
0

EP: Thank you Sir!.

 Oct 21, 2018
 #5
avatar+18846 
+1

You're ALWAYS welcome......thanx for the feedback !  cheeky

ElectricPavlov  Oct 21, 2018
 #7
avatar+18846 
+2

A = B+1     then     A-1 = B

 

Then A^2 - B^2 =   A^2 - (A-1)^2

                         = A^2 - (A^2 -2A +1)

                         = A^2 - A^2 + 2A -1  = 2A-1

 Oct 22, 2018

34 Online Users

avatar
avatar
avatar
avatar