Let triangle ABC be A(2,-1,0), B(1,2,3), C(-1,0,1), with its orthocenter being H(a,b,c), what is a+b+c?
Here's a Geogebra visual solution (sorry, I used D for the orthocenter, not H):
.
Thanks Alan,
I've never tried to draw anything so complicated.
But, I would like to see someone do this algebraically.
I don't have time and to be honest I don't think I know how.
Do you need to find 3 dimensional gradients ???
Let triangle ABC be A(2,-1,0), B(1,2,3), C(-1,0,1), with its orthocenter being H(a,b,c), what is a, b, and c ?
\\\small{\text{ $ \vec{u}=\vec{a}-\vec{c}= \left( \begin{array}{c}2-(-1)\\-1-0 \\0-1 \end{array} \right)=\left( \begin{array}{c}3\\-1 \\-1 \end{array} \right)\qquad \vec{v}=\vec{b}-\vec{c}= \left( \begin{array}{c}1-(-1)\\2-0 \\3-1 \end{array} \right)=\left( \begin{array}{c}2\\2 \\2\end{array} \right) $ }}\\\\ \small{\text{ $ u=|\vec{u}|=\sqrt{3^2+(-1)^2+(-1)^2}=\sqrt{11} \qquad v=|\vec{v}|=\sqrt{2^2+2^2+2^2}=\sqrt{12} $ }}\\\\ \small{\text{ $ \vec{u_0}=\dfrac{\vec{u}}{u}= \frac{1}{\sqrt{11}} \left( \begin{array}{c}3\\-1 \\-1 \end{array} \right)\qquad \vec{v_0}=\dfrac{\vec{v}}{v}= \frac{1}{\sqrt{12}} \left( \begin{array}{c}2\\2 \\2 \end{array} \right)\qquad $ }}\\\\ \boxed{ \small{\text{ $ \vec{H}=(\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0}+ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ] + \vec{c} $ }} }\\\\ \boxed{ \small{\text{ $ \vec{H}=(\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0}+ \lambda [\vec{u} - (\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0} ] + \vec{c} $ }} }\\\\ \boxed{ \small{\text{ $ \vec{H}-\vec{c}= (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0}+ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ] = (\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0}+ \lambda [\vec{u} - (\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0} ] $ }} }\\\\ \small{\text{ $ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ] -\lambda [\vec{u} - (\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0} ] =(\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0} -(\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} \quad | \quad \cdot \vec{v_0} $ }}\\\\ \small{\text{ $ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ]\cdot \vec{v_0} -\underbrace{\lambda [\vec{u} - (\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0} ]\cdot \vec{v_0}}_{=0} =(\vec{v_0}\cdot \vec{u}) \cdot (\vec{v_0}\cdot \vec{v_0} ) -(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} ) $ }}\\\\ \small{\text{ $ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ]\cdot \vec{v_0} =(\vec{v_0}\cdot \vec{u}) \cdot \underbrace{(\vec{v_0}\cdot \vec{v_0} )}_{=1} -(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} ) $ }}\\\\ \small{\text{ $ \mu [\underbrace{(\vec{v}\cdot \vec{v_0})}_{=v} - (\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0}) ] =(\vec{v_0}\cdot \vec{u}) -(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} ) $ }}\\\\ \small{\text{ $ \mu [v - (\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0}) ] =(\vec{v_0}\cdot \vec{u}) -(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} ) $ }}
\boxed{ \small{\text{ $ \mu= \dfrac{ (\vec{v_0}\cdot \vec{u}) -(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} ) } {v - (\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0}) } \qquad \vec{H}=(\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0}+ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ] + \vec{c} $ }} }\\\\ \small{\text{ $ \vec{v}\cdot \vec{u} = \left(\begin{array}{c} 2\\2 \\2 \end{array}\right) \cdot \left(\begin{array}{c} 3\\-1 \\-1 \end{array}\right) =6-2-2 = 2 $ }}\\\\ \small{\text{ $ \vec{v_0}\cdot \vec{u} = \dfrac{\vec{v}\cdot \vec{u}}{v} = \dfrac{2}{\sqrt{12}} \qquad \vec{u_0}\cdot \vec{v} = \dfrac{\vec{v}\cdot \vec{u}}{u} = \dfrac{2}{\sqrt{11}} \qquad \vec{u_0}\cdot \vec{v_0} = \dfrac{\vec{v}\cdot \vec{u}}{v\cdot u} = \dfrac{2}{\sqrt{11}\cdot \sqrt{12}} $ }}\\\\ \small{\text{ $ \mu= \dfrac{ \dfrac{2}{\sqrt{12}} -\dfrac{2}{\sqrt{11}} \cdot \dfrac{2}{\sqrt{11}\cdot \sqrt{12}} } {\sqrt{12} - \dfrac{2}{\sqrt{11}} \cdot \dfrac{2}{\sqrt{11}\cdot \sqrt{12}} } =\dfrac{ \dfrac{1}{\sqrt{12}}\cdot \left(2-\dfrac{4}{11} \right) } {\dfrac{1}{\sqrt{12}}\cdot \left( 12 -\dfrac{4}{11} \right) } = \dfrac{18}{128} = \dfrac{9}{64} $ }}
→H=(→u0⋅→v)⋅→u0+μ[→v−(→u0⋅→v)⋅→u0]+→c →H=(1−μ)[(→u0⋅→v)⋅→u0]+μ→v+→c →H=(1−964)⋅[2√11⋅→u0]+964⋅→v+→c →H=(5564)⋅(2√11)⋅→uu+964⋅→v+→c →H=(5564)⋅(2√11)⋅→u√11+964⋅→v+→c →H=1064⋅→u+964⋅→v+→c
→H=1064⋅(3−1−1)+964⋅(222)+(−101) →H=(3064+1864−1−1064+1864+0−1064+1864+1) →H=(−1418118) →H=(−0.250.1251.125)
Thank you. That is a masterpeice Heureka.
Unfortunately I do not understand vectors very well so I got lost fairly quickly.
I will try to take time out to understand it better.
I should do some study on vectors. There are just so many things to learn.