+0  
 
0
7113
2
avatar

if alpha and beta are the zeroes of a quadratic polynomial 2x^2 - 3x - 5 form a polynomial whose zeroes are (i)alpha^2 and beta^2 (ii)1/alpha^2 and 1/beta^2

Guest Apr 29, 2015

Best Answer 

 #1
avatar+26750 
+10

The polynomial can be factored into: (x+1)(2x-5), so we have α = -1 and β = 5/2

 

(i)  The polynomial with zeros α2 and β2 can be factored as (x - α2)(x - β2).   This can be multiplied out to get 

x2 - (α2 + β2)x + α2β2    or    x2 - (1 + 25/4)x + 25/4    or    x2 -  (29/4)x + 25/4  

 

Multiply all the terms by 4 to get   4x2 -  29x + 25

 

See if you can now do part (ii).

Alan  Apr 29, 2015
 #1
avatar+26750 
+10
Best Answer

The polynomial can be factored into: (x+1)(2x-5), so we have α = -1 and β = 5/2

 

(i)  The polynomial with zeros α2 and β2 can be factored as (x - α2)(x - β2).   This can be multiplied out to get 

x2 - (α2 + β2)x + α2β2    or    x2 - (1 + 25/4)x + 25/4    or    x2 -  (29/4)x + 25/4  

 

Multiply all the terms by 4 to get   4x2 -  29x + 25

 

See if you can now do part (ii).

Alan  Apr 29, 2015
 #2
avatar+92781 
+5

 

If alpha and beta are the zeroes of a quadratic polynomial  $$2x^2 - 3x - 5$$  form a polynomial whose zeroes are

The roots for this is  2.5 an -1         These are    $$\alpha\;\;and\;\;\beta$$

 

(i)      $$\alpha^2=6.25\;\;and \;\;\beta^2 =1$$

 

In any quadratic    ax^2+bx+c   the sum of the roots is given by  -b/a = 7.25    

and the product of the roots is c/a = 6.25

So one solution would be       $$x^2-7.25x+6.25$$

 

 

 

(ii)     $$\frac{1}{\alpha^2} \;\;and\;\; \frac{1}{\beta^2}$$       

 

   $$\\Roots\;are\;\frac{1}{6.25}=\frac{4}{25}=0.16\;\;and\;\;1\\\\
so\;\;\frac{-b}{a}=1.16\;\;and\;\; \frac{c}{a}=0.16\\
Let a=1\\
$So one solution would be $ x^2-1.16x+0.16$$

Melody  Apr 30, 2015

17 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.