+0  
 
0
414
1
avatar

If BC is twice as long as AB, which equations would let you find the length of AC?

Guest May 28, 2014

Best Answer 

 #1
avatar+92253 
+5

Is some of this question missing?

I am going to use the cosine rule.

$$\begin{array}{rll}
\overline{AC}^2&=&(2x)^2+x^2-(2*2x*x*Cos( \overline{AC}^2&=&4x^2+x^2-(4x^2Cos( \overline{AC}^2&=&5x^2-(4x^2Cos( \overline{AC}^2&=&x^2(5-4Cos( \overline{AC}&=&x\sqrt{5-4Cos( \overline{AC}&=&\overline{AB}\sqrt{5-4Cos( \end{array}$$

That should be okay if i didn't make any stupid mistakes.

Melody  May 29, 2014
Sort: 

1+0 Answers

 #1
avatar+92253 
+5
Best Answer

Is some of this question missing?

I am going to use the cosine rule.

$$\begin{array}{rll}
\overline{AC}^2&=&(2x)^2+x^2-(2*2x*x*Cos( \overline{AC}^2&=&4x^2+x^2-(4x^2Cos( \overline{AC}^2&=&5x^2-(4x^2Cos( \overline{AC}^2&=&x^2(5-4Cos( \overline{AC}&=&x\sqrt{5-4Cos( \overline{AC}&=&\overline{AB}\sqrt{5-4Cos( \end{array}$$

That should be okay if i didn't make any stupid mistakes.

Melody  May 29, 2014

7 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details