+0

if cos(t) = 1/3 and sin(t) < 0 find sin(t) and tan(t) using trigonometric identities.

0
167
1

if cos(t) = 1/3 and sin(t) < 0 find sin(t) and tan(t) using trigonometric identities.

Guest Apr 12, 2017

#1
+5552
+2

If cos(t) = 1/3 and sin(t) is negative,

this is a picture of the triangle ∠t makes:

Now we can use the Pythagorean theorem to find sin(t).

sin2(t) + (1/3)2 = 12

sin2(t) = 1 - 1/9

sin(t) = $$\pm\sqrt{\frac89}=\pm\frac{\sqrt8}{3}$$

The prolem says that sin < 0 , so we know that it is the negative option.

sin(t) = $$-\frac{2\sqrt2}{3}$$

tan = sin / cos

tan(t) = sin(t) / cos(t)

tan(t) = $$-\frac{2\sqrt2}{3}/\frac13$$

tan(t) = $$-\frac{2\sqrt2}{3}\cdot\frac31$$

tan(t) = $$-2\sqrt2$$

hectictar  Apr 12, 2017
Sort:

#1
+5552
+2

If cos(t) = 1/3 and sin(t) is negative,

this is a picture of the triangle ∠t makes:

Now we can use the Pythagorean theorem to find sin(t).

sin2(t) + (1/3)2 = 12

sin2(t) = 1 - 1/9

sin(t) = $$\pm\sqrt{\frac89}=\pm\frac{\sqrt8}{3}$$

The prolem says that sin < 0 , so we know that it is the negative option.

sin(t) = $$-\frac{2\sqrt2}{3}$$

tan = sin / cos

tan(t) = sin(t) / cos(t)

tan(t) = $$-\frac{2\sqrt2}{3}/\frac13$$

tan(t) = $$-\frac{2\sqrt2}{3}\cdot\frac31$$

tan(t) = $$-2\sqrt2$$

hectictar  Apr 12, 2017

26 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details