+0  
 
0
101
2
avatar

If f(x)=x^5-1/3, find f^-1(-31/96).

Guest Jul 31, 2018
 #1
avatar+20680 
+1

If f(x)=x^5-1/3, find f^-1(-31/96).

 

\(\begin{array}{|rcll|} \hline \boxed{f\left(f^{-1}\left(\dfrac{-31}{96}\right)\right) = \dfrac{-31}{96} \qquad (1) } \\\\ f(x) &=& x^5-\dfrac{1}{3} \quad | \quad x = f^{-1}\left(\dfrac{-31}{96}\right) \\\\ f\Big(f^{-1}\left(\dfrac{-31}{96}\right)\Big) &=& \left(f^{-1}\left(\dfrac{-31}{96}\right) \right)^5-\dfrac{1}{3} \\\\ && \left(f^{-1}\left(\dfrac{-31}{96}\right) \right)^5-\dfrac{1}{3} = \dfrac{-31}{96} \quad | \quad \text{ see } (1) \\\\ && \left(f^{-1}\left(\dfrac{-31}{96}\right) \right)^5 = \dfrac{1}{3} - \dfrac{31}{96} \\\\ && \left(f^{-1}\left(\dfrac{-31}{96}\right) \right)^5 = \dfrac{96-3\cdot 31}{3\cdot 96} \\\\ && \left(f^{-1}\left(\dfrac{-31}{96}\right) \right)^5 = \dfrac{3}{3\cdot 96} \\\\ && \left(f^{-1}\left(\dfrac{-31}{96}\right) \right)^5 = \dfrac{1}{96} \\\\ && f^{-1}\left(\dfrac{-31}{96}\right) = \sqrt[5]{\dfrac{1}{96}} \\\\ && f^{-1}\left(\dfrac{-31}{96}\right) = \sqrt[5]{0.01041666667} \\\\ && \mathbf{ f^{-1}\left(\dfrac{-31}{96}\right) = 0.40137078088 } \\ \hline \end{array}\)

 

laugh

heureka  Jul 31, 2018
edited by heureka  Jul 31, 2018
 #2
avatar
0

Thank you so much! smiley

Guest Aug 1, 2018

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.