if i have sides with each having a length of 13, 14, and 15. how big will each angle be?
if i have sides with each having a length of 13, 14, and 15. how big will each angle be?
Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is
A=√s(s−a)(s−b)(s−c),
where s is the semiperimeter of the triangle; that is,
s=a+b+c2
s=a+b+c2=13+14+152=422s=21A=√s⋅(s−a)⋅(s−b)⋅(s−c)=√21⋅(21−13)⋅(21−14)⋅(21−15)=√21⋅8⋅7⋅6=√7056A=84
2⋅A=b⋅c⋅sinαsinα=2⋅Ab⋅csinα=2⋅8414⋅15α=arcsin(16814⋅15)α=arcsin(0.8)α=53.1301023542∘
2⋅A=c⋅a⋅sinβsinβ=2⋅Ac⋅asinβ=2⋅8415⋅13β=arcsin(16815⋅13)β=arcsin(0.86153846154)β=59.4897625939∘
2⋅A=a⋅b⋅sinγsinγ=2⋅Aa⋅bsinγ=2⋅8413⋅14γ=arcsin(16813⋅14)γ=arcsin(0.92307692308)γ=67.3801350520∘