If is an integer and the root(s) of the quadratic expression 1/2*x^2 + sx - 1/3 = 0 are integers, find the sum of all possible values of s.
If is an integer and the root(s) of the quadratic expression 1/2*x^2 + sx - 1/3 = 0 are integers, find the sum of all possible values of s.
Hello Guest!
\( \frac{1}{2}x^2+sx-\frac{1}{3}=0\)
a b c
\(x = {-s \pm \sqrt{s^2-4\cdot 0.5\cdot \frac{1}{3}} \over 2\cdot 0.5}\\ x =-s\pm \sqrt{s^2-\frac{2}{3}}\)
\(s\in \{-3\mathbb Z\}\ |\ (x =-s+ \sqrt{s^2-\frac{2}{3}})\)
\(s\in \{+3\mathbb Z\}\ |\ (x =-s- \sqrt{s^2-\frac{2}{3}})\)
Incorrect. Question cannot be solved.
!