+0  
 
0
643
2
avatar

If n is a positive integer such that 2n + 1 is a perfect square, show that n + 1 is the sum of two successive perfect squares.

Guest Nov 26, 2015

Best Answer 

 #1
avatar+20009 
+15

If n is a positive integer such that 2n + 1 is a perfect square, show that n + 1 is the sum of two successive perfect squares.

 

2n + 1 is a perfect square:

\(\begin{array}{rcl} 2n+1 &=& a^2 \\ 2n &=& a^2 - 1 \\ n &=& \frac{a^2-1}{2}\\ \hline n+1 &=& \frac{a^2-1}{2} +1 \\ n+1 &=& \frac{a^2-1+2}{2}\\ n+1 &=& \frac{a^2+1}{2}\\ \end{array}\)

 

Because \(\frac{a^2+1}{2}\) is a integer then \(a^2+1\) is even and divisible by 2, then \(a^2\) is odd or also \(a\) is odd.

A odd number is  \(2b+1\)

 

\(\begin{array}{rcl} n+1 &=& \frac{a^2+1}{2}\qquad \text{substitute }\ a = 2b+1\\ n+1 &=& \frac{(2b+1)^2+1}{2} \\ n+1 &=& \frac{4b^2+4b+1+1}{2} \\ n+1 &=& \frac{4b^2+4b+2}{2} \\ n+1 &=& 2b^2+2b+1 \\ n+1 &=& b^2 + b^2+2b+1 \\ n+1 &=& b^2 +(b+1)^2\\ \end{array}\)

 

So n + 1 is the sum of two successive perfect squares and \(b = \frac{a-1}{2}\).

 

Example:

\(\begin{array}{rcl} a &=& 5\\ 2n+1 =a^2 &=& 25 \qquad \rightarrow\qquad n = \frac{a^2-1}{2} = \frac{25-1}{2} = 12\\\\ b &= &\frac{a-1}{2} = \frac{5-1}{2} = 2\\ n+1 &=& 12+1 = 13 \\ 13 &=& b^2 + (b+1)^2 = 2^2+3^2 = 4+9\\ \end{array}\)

 

laugh

heureka  Nov 26, 2015
 #1
avatar+20009 
+15
Best Answer

If n is a positive integer such that 2n + 1 is a perfect square, show that n + 1 is the sum of two successive perfect squares.

 

2n + 1 is a perfect square:

\(\begin{array}{rcl} 2n+1 &=& a^2 \\ 2n &=& a^2 - 1 \\ n &=& \frac{a^2-1}{2}\\ \hline n+1 &=& \frac{a^2-1}{2} +1 \\ n+1 &=& \frac{a^2-1+2}{2}\\ n+1 &=& \frac{a^2+1}{2}\\ \end{array}\)

 

Because \(\frac{a^2+1}{2}\) is a integer then \(a^2+1\) is even and divisible by 2, then \(a^2\) is odd or also \(a\) is odd.

A odd number is  \(2b+1\)

 

\(\begin{array}{rcl} n+1 &=& \frac{a^2+1}{2}\qquad \text{substitute }\ a = 2b+1\\ n+1 &=& \frac{(2b+1)^2+1}{2} \\ n+1 &=& \frac{4b^2+4b+1+1}{2} \\ n+1 &=& \frac{4b^2+4b+2}{2} \\ n+1 &=& 2b^2+2b+1 \\ n+1 &=& b^2 + b^2+2b+1 \\ n+1 &=& b^2 +(b+1)^2\\ \end{array}\)

 

So n + 1 is the sum of two successive perfect squares and \(b = \frac{a-1}{2}\).

 

Example:

\(\begin{array}{rcl} a &=& 5\\ 2n+1 =a^2 &=& 25 \qquad \rightarrow\qquad n = \frac{a^2-1}{2} = \frac{25-1}{2} = 12\\\\ b &= &\frac{a-1}{2} = \frac{5-1}{2} = 2\\ n+1 &=& 12+1 = 13 \\ 13 &=& b^2 + (b+1)^2 = 2^2+3^2 = 4+9\\ \end{array}\)

 

laugh

heureka  Nov 26, 2015
 #2
avatar+88899 
+5

Vey nice, heureka......!!!!!

 

 

cool cool cool

CPhill  Nov 26, 2015

13 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.