+0  
 
0
349
2
avatar

If n is a positive integer such that 2n + 1 is a perfect square, show that n + 1 is the sum of two successive perfect squares.

Guest Nov 26, 2015

Best Answer 

 #1
avatar+18715 
+15

If n is a positive integer such that 2n + 1 is a perfect square, show that n + 1 is the sum of two successive perfect squares.

 

2n + 1 is a perfect square:

\(\begin{array}{rcl} 2n+1 &=& a^2 \\ 2n &=& a^2 - 1 \\ n &=& \frac{a^2-1}{2}\\ \hline n+1 &=& \frac{a^2-1}{2} +1 \\ n+1 &=& \frac{a^2-1+2}{2}\\ n+1 &=& \frac{a^2+1}{2}\\ \end{array}\)

 

Because \(\frac{a^2+1}{2}\) is a integer then \(a^2+1\) is even and divisible by 2, then \(a^2\) is odd or also \(a\) is odd.

A odd number is  \(2b+1\)

 

\(\begin{array}{rcl} n+1 &=& \frac{a^2+1}{2}\qquad \text{substitute }\ a = 2b+1\\ n+1 &=& \frac{(2b+1)^2+1}{2} \\ n+1 &=& \frac{4b^2+4b+1+1}{2} \\ n+1 &=& \frac{4b^2+4b+2}{2} \\ n+1 &=& 2b^2+2b+1 \\ n+1 &=& b^2 + b^2+2b+1 \\ n+1 &=& b^2 +(b+1)^2\\ \end{array}\)

 

So n + 1 is the sum of two successive perfect squares and \(b = \frac{a-1}{2}\).

 

Example:

\(\begin{array}{rcl} a &=& 5\\ 2n+1 =a^2 &=& 25 \qquad \rightarrow\qquad n = \frac{a^2-1}{2} = \frac{25-1}{2} = 12\\\\ b &= &\frac{a-1}{2} = \frac{5-1}{2} = 2\\ n+1 &=& 12+1 = 13 \\ 13 &=& b^2 + (b+1)^2 = 2^2+3^2 = 4+9\\ \end{array}\)

 

laugh

heureka  Nov 26, 2015
Sort: 

2+0 Answers

 #1
avatar+18715 
+15
Best Answer

If n is a positive integer such that 2n + 1 is a perfect square, show that n + 1 is the sum of two successive perfect squares.

 

2n + 1 is a perfect square:

\(\begin{array}{rcl} 2n+1 &=& a^2 \\ 2n &=& a^2 - 1 \\ n &=& \frac{a^2-1}{2}\\ \hline n+1 &=& \frac{a^2-1}{2} +1 \\ n+1 &=& \frac{a^2-1+2}{2}\\ n+1 &=& \frac{a^2+1}{2}\\ \end{array}\)

 

Because \(\frac{a^2+1}{2}\) is a integer then \(a^2+1\) is even and divisible by 2, then \(a^2\) is odd or also \(a\) is odd.

A odd number is  \(2b+1\)

 

\(\begin{array}{rcl} n+1 &=& \frac{a^2+1}{2}\qquad \text{substitute }\ a = 2b+1\\ n+1 &=& \frac{(2b+1)^2+1}{2} \\ n+1 &=& \frac{4b^2+4b+1+1}{2} \\ n+1 &=& \frac{4b^2+4b+2}{2} \\ n+1 &=& 2b^2+2b+1 \\ n+1 &=& b^2 + b^2+2b+1 \\ n+1 &=& b^2 +(b+1)^2\\ \end{array}\)

 

So n + 1 is the sum of two successive perfect squares and \(b = \frac{a-1}{2}\).

 

Example:

\(\begin{array}{rcl} a &=& 5\\ 2n+1 =a^2 &=& 25 \qquad \rightarrow\qquad n = \frac{a^2-1}{2} = \frac{25-1}{2} = 12\\\\ b &= &\frac{a-1}{2} = \frac{5-1}{2} = 2\\ n+1 &=& 12+1 = 13 \\ 13 &=& b^2 + (b+1)^2 = 2^2+3^2 = 4+9\\ \end{array}\)

 

laugh

heureka  Nov 26, 2015
 #2
avatar+78755 
+5

Vey nice, heureka......!!!!!

 

 

cool cool cool

CPhill  Nov 26, 2015

6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details