We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1
996
2
avatar

If n is a positive integer such that 2n + 1 is a perfect square, show that n + 1 is the sum of two successive perfect squares.

 Nov 26, 2015

Best Answer 

 #1
avatar+23299 
+15

If n is a positive integer such that 2n + 1 is a perfect square, show that n + 1 is the sum of two successive perfect squares.

 

2n + 1 is a perfect square:

\(\begin{array}{rcl} 2n+1 &=& a^2 \\ 2n &=& a^2 - 1 \\ n &=& \frac{a^2-1}{2}\\ \hline n+1 &=& \frac{a^2-1}{2} +1 \\ n+1 &=& \frac{a^2-1+2}{2}\\ n+1 &=& \frac{a^2+1}{2}\\ \end{array}\)

 

Because \(\frac{a^2+1}{2}\) is a integer then \(a^2+1\) is even and divisible by 2, then \(a^2\) is odd or also \(a\) is odd.

A odd number is  \(2b+1\)

 

\(\begin{array}{rcl} n+1 &=& \frac{a^2+1}{2}\qquad \text{substitute }\ a = 2b+1\\ n+1 &=& \frac{(2b+1)^2+1}{2} \\ n+1 &=& \frac{4b^2+4b+1+1}{2} \\ n+1 &=& \frac{4b^2+4b+2}{2} \\ n+1 &=& 2b^2+2b+1 \\ n+1 &=& b^2 + b^2+2b+1 \\ n+1 &=& b^2 +(b+1)^2\\ \end{array}\)

 

So n + 1 is the sum of two successive perfect squares and \(b = \frac{a-1}{2}\).

 

Example:

\(\begin{array}{rcl} a &=& 5\\ 2n+1 =a^2 &=& 25 \qquad \rightarrow\qquad n = \frac{a^2-1}{2} = \frac{25-1}{2} = 12\\\\ b &= &\frac{a-1}{2} = \frac{5-1}{2} = 2\\ n+1 &=& 12+1 = 13 \\ 13 &=& b^2 + (b+1)^2 = 2^2+3^2 = 4+9\\ \end{array}\)

 

laugh

 Nov 26, 2015
 #1
avatar+23299 
+15
Best Answer

If n is a positive integer such that 2n + 1 is a perfect square, show that n + 1 is the sum of two successive perfect squares.

 

2n + 1 is a perfect square:

\(\begin{array}{rcl} 2n+1 &=& a^2 \\ 2n &=& a^2 - 1 \\ n &=& \frac{a^2-1}{2}\\ \hline n+1 &=& \frac{a^2-1}{2} +1 \\ n+1 &=& \frac{a^2-1+2}{2}\\ n+1 &=& \frac{a^2+1}{2}\\ \end{array}\)

 

Because \(\frac{a^2+1}{2}\) is a integer then \(a^2+1\) is even and divisible by 2, then \(a^2\) is odd or also \(a\) is odd.

A odd number is  \(2b+1\)

 

\(\begin{array}{rcl} n+1 &=& \frac{a^2+1}{2}\qquad \text{substitute }\ a = 2b+1\\ n+1 &=& \frac{(2b+1)^2+1}{2} \\ n+1 &=& \frac{4b^2+4b+1+1}{2} \\ n+1 &=& \frac{4b^2+4b+2}{2} \\ n+1 &=& 2b^2+2b+1 \\ n+1 &=& b^2 + b^2+2b+1 \\ n+1 &=& b^2 +(b+1)^2\\ \end{array}\)

 

So n + 1 is the sum of two successive perfect squares and \(b = \frac{a-1}{2}\).

 

Example:

\(\begin{array}{rcl} a &=& 5\\ 2n+1 =a^2 &=& 25 \qquad \rightarrow\qquad n = \frac{a^2-1}{2} = \frac{25-1}{2} = 12\\\\ b &= &\frac{a-1}{2} = \frac{5-1}{2} = 2\\ n+1 &=& 12+1 = 13 \\ 13 &=& b^2 + (b+1)^2 = 2^2+3^2 = 4+9\\ \end{array}\)

 

laugh

heureka Nov 26, 2015
 #2
avatar+104793 
+5

Vey nice, heureka......!!!!!

 

 

cool cool cool

 Nov 26, 2015

3 Online Users

avatar