Hi Alan,
cos(α)=±35if +35⇒α=cos−1(0.6)=53.1301023542\ensuremath∘if −35⇒α=cos−1(−0.6)=126.869897646\ensuremath∘sin(53.1301023542\ensuremath∘)=sin(126.869897646\ensuremath∘)=0.8=45
Latex code:
\text{if }{+\frac{3}{5}} \Rightarrow \alpha = \cos^{-1}(0.6) = 53.1301023542\ensuremath{^\circ}\\
\text{if }{-\frac{3}{5}} \Rightarrow \alpha = \cos^{-1}(-0.6) = 126.869897646\ensuremath{^\circ}\\
\sin{(53.1301023542\ensuremath{^\circ})}=\sin{(126.869897646\ensuremath{^\circ})}=0.8=\frac{4}{5}
Using the arcsin function
asin(4/5) = about 53.13 degrees
This angle could lie in the 2nd quadrant, too= (180 - 53.13) = 126.87 degrees
If sin=4/5 then we can picture the well known 3, 4, 5 right-angled triangle; so cos = 3/5.
Hi Alan,
cos(α)=±35if +35⇒α=cos−1(0.6)=53.1301023542\ensuremath∘if −35⇒α=cos−1(−0.6)=126.869897646\ensuremath∘sin(53.1301023542\ensuremath∘)=sin(126.869897646\ensuremath∘)=0.8=45
Latex code:
\text{if }{+\frac{3}{5}} \Rightarrow \alpha = \cos^{-1}(0.6) = 53.1301023542\ensuremath{^\circ}\\
\text{if }{-\frac{3}{5}} \Rightarrow \alpha = \cos^{-1}(-0.6) = 126.869897646\ensuremath{^\circ}\\
\sin{(53.1301023542\ensuremath{^\circ})}=\sin{(126.869897646\ensuremath{^\circ})}=0.8=\frac{4}{5}