If ((sqrt2x))/((sqrt3x - 1)) = 3/2, solve for x. Express your answer as a simplified fraction.
Solve for x:
(sqrt(2) sqrt(x))/(sqrt(3) sqrt(x) - 1) = 3/2
Cross multiply:
2 sqrt(2) sqrt(x) = 3 (sqrt(3) sqrt(x) - 1)
Subtract 3 sqrt(3) sqrt(x) from both sides and collect in terms of sqrt(x):
(2 sqrt(2) - 3 sqrt(3)) sqrt(x) = -3
Divide both sides by 2 sqrt(2) - 3 sqrt(3):
sqrt(x) = -3/(2 sqrt(2) - 3 sqrt(3))
Raise both sides to the power of two:
x = 9/(2 sqrt(2) - 3 sqrt(3))^2 = 315/361 + (108 sqrt(6))/361