+0  
 
0
691
4
avatar

if tan(a-b)=1/4, tan(a+b)=1/3 then tan2a=?

Guest Oct 14, 2014

Best Answer 

 #2
avatar+93644 
+10

$$\\atan(\frac{1}{4})=A-B\qquad (1)\\\\
atan(\frac{1}{3})=A+B\qquad(2)\\\\
(1)+(2)\\\\
atan(\frac{1}{4})+atan(\frac{1}{3})=2A\\\\
tan[atan(\frac{1}{4})+atan(\frac{1}{3})]=tan[2A]\\\\$$

 

 

$$$Now I am going to use the identity$\\\\
\boxed{tan(\theta_1+\theta_2)=\frac{tan(\theta_1)+tan(\theta_2)}{1-tan(\theta_1)tan(\theta_2)}}\\\\\\
tan(2A)\\\\
=tan[atan(\frac{1}{4})+atan(\frac{1}{3})]\\\\
=\frac{\frac{1}{4}+\frac{1}{3}}{1-\frac{1}{4}\times\frac{1}{3}}\\\\
=\frac{\frac{7}{12}}{1-\frac{1}{12}}\\\\
=\frac{7}{12}\div \frac{11}{12}\\\\
=\frac{7}{12}\times \frac{12}{11}\\\\
=\frac{7}{11}\\\\
$This answer is exact$$$

Melody  Oct 14, 2014
 #1
avatar+89865 
+5

Using the tangent inverse

tan-1(1/4) = (a - b) = about 14.04°  ......  and tan-1(1/3) = (a +b) = about 18.43°

So

(a -b) + (a+b) = (14.04 + 18.43)° →  

2a = about 32.47°

So

tan(2a) = tan(32.47°) = about .636363= 7/11

 

CPhill  Oct 14, 2014
 #2
avatar+93644 
+10
Best Answer

$$\\atan(\frac{1}{4})=A-B\qquad (1)\\\\
atan(\frac{1}{3})=A+B\qquad(2)\\\\
(1)+(2)\\\\
atan(\frac{1}{4})+atan(\frac{1}{3})=2A\\\\
tan[atan(\frac{1}{4})+atan(\frac{1}{3})]=tan[2A]\\\\$$

 

 

$$$Now I am going to use the identity$\\\\
\boxed{tan(\theta_1+\theta_2)=\frac{tan(\theta_1)+tan(\theta_2)}{1-tan(\theta_1)tan(\theta_2)}}\\\\\\
tan(2A)\\\\
=tan[atan(\frac{1}{4})+atan(\frac{1}{3})]\\\\
=\frac{\frac{1}{4}+\frac{1}{3}}{1-\frac{1}{4}\times\frac{1}{3}}\\\\
=\frac{\frac{7}{12}}{1-\frac{1}{12}}\\\\
=\frac{7}{12}\div \frac{11}{12}\\\\
=\frac{7}{12}\times \frac{12}{11}\\\\
=\frac{7}{11}\\\\
$This answer is exact$$$

Melody  Oct 14, 2014
 #3
avatar+93644 
+5

Thanks Chris    

Melody  Oct 14, 2014
 #4
avatar+89865 
+5

I did mine "on the fly"....Melody's approach is actually "better"

 

CPhill  Oct 14, 2014

37 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.