if TanA+1/TanA = 2 , find the value of tanA^2+1/tan^2A
$$\\tanA+\frac{1}{tanA} = 2\\\\
\left(tanA+\frac{1}{tanA}\right)^2 = 2^2\\\\
tan^2A+\frac{1}{tan^2A}+2*tanA*\frac{1}{tanA}= 4\\\\
tan^2A+\frac{1}{tan^2A}+2= 4\\\\
tan^2A+\frac{1}{tan^2A}= 2\\\\$$