Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+5
3223
3
avatar+257 

If tanA+tanB=x & cotA+cotB=y, then prove that-

cot(A+B)=1/x-1/y

 Mar 29, 2016

Best Answer 

 #1
avatar+26396 
+15

If tanA+tanB=x & cotA+cotB=y, then prove that-

cot(A+B)=1/x-1/y

 

tan(A)+tan(B)=xcot(A)+cot(B)=y

 

formulary

tan(A+B)=tan(A)+tan(B)1tan(A)tan(B)cot(A+B)=cot(A)cot(B)1cot(A)+cot(B)

 

1.

tan(A+B)=1cot(A+B)=x1tan(A)tan(B)1tan(A)tan(B)=xcot(A+B)tan(A)tan(B)1=xcot(A+B)tan(A)tan(B)=1xcot(A+B)1cot(A)1cot(B)=1xcot(A+B)cot(A)cot(B)=11xcot(A+B)

 

2.

cot(A+B)=cot(A)cot(B)1yycot(A+B)=cot(A)cot(B)11+ycot(A+B)=cot(A)cot(B)cot(A)cot(B)=11xcot(A+B)1+ycot(A+B)=11xcot(A+B)[1+ycot(A+B)][1xcot(A+B)]=11xcot(A+B)+ycot(A+B)yxcot2(A+B)=1xcot(A+B)+ycot(A+B)yxcot2(A+B)=0|:cot(A+B)x+yyxcot(A+B)=0yxcot(A+B)=yx|:xycot(A+B)=yxxycot(A+B)=yxyxxycot(A+B)=1x1y

laugh

 Mar 29, 2016
 #1
avatar+26396 
+15
Best Answer

If tanA+tanB=x & cotA+cotB=y, then prove that-

cot(A+B)=1/x-1/y

 

tan(A)+tan(B)=xcot(A)+cot(B)=y

 

formulary

tan(A+B)=tan(A)+tan(B)1tan(A)tan(B)cot(A+B)=cot(A)cot(B)1cot(A)+cot(B)

 

1.

tan(A+B)=1cot(A+B)=x1tan(A)tan(B)1tan(A)tan(B)=xcot(A+B)tan(A)tan(B)1=xcot(A+B)tan(A)tan(B)=1xcot(A+B)1cot(A)1cot(B)=1xcot(A+B)cot(A)cot(B)=11xcot(A+B)

 

2.

cot(A+B)=cot(A)cot(B)1yycot(A+B)=cot(A)cot(B)11+ycot(A+B)=cot(A)cot(B)cot(A)cot(B)=11xcot(A+B)1+ycot(A+B)=11xcot(A+B)[1+ycot(A+B)][1xcot(A+B)]=11xcot(A+B)+ycot(A+B)yxcot2(A+B)=1xcot(A+B)+ycot(A+B)yxcot2(A+B)=0|:cot(A+B)x+yyxcot(A+B)=0yxcot(A+B)=yx|:xycot(A+B)=yxxycot(A+B)=yxyxxycot(A+B)=1x1y

laugh

heureka Mar 29, 2016
 #2
avatar
+5

Here's an alternative method.

cot(A+B)=1tan(A+B)=1tan(A)tan(B)tan(A)+tan(B)=(cot(A)+cot(B))(1tan(A)tan(B))(cot(A)+cot(B))(tan(A)+tan(B))=cot(A)+cot(B)tan(A)tan(B))(cot(A)+cot(B))(tan(A)+tan(B)=1tan(A)+tan(B)1cot(A)+cot(B)=1x1y.

 Mar 29, 2016
 #3
avatar+130474 
+5

Here's the proof in the opposite direction :

 

1/x  - 1/y    =

 

1/ [ tanA + tanB]  - 1 /[ cotA+cotB]

 

[(cotA + cotB) - (tanA + tanB)] / [(tanA + tanB) ( cotA + cotB)]

 

[(cotAcotB - 1)/(cot(A + B) - [tan(A + B)(1 - tanAtanB) ] / [(tanA + tanB) ( cotA + cotB)]

 

[ (cotAcotB -1) - cot(A +B)tan(A+B)( 1 - tanAtanB)]/ [ (cot(A+B)(tanA + tanB)(cotA + cotB)]

 

[(cotAcotB -1 ) (1 - tanAtanB)] / [(tanA + tanB)(cotAcotB -1)]

 

(1 - tanAtanB) / (tanA + tanB)  =

 

1 / [( tanA + tanB) / (1 - tanAtanB)]  =

 

1 / tan(A + B)   =

 

cot(A + B)

 

 

cool cool cool

 Mar 29, 2016

1 Online Users

avatar