If tanA+tanB=x & cotA+cotB=y, then prove that-
cot(A+B)=1/x-1/y
tan(A)+tan(B)=xcot(A)+cot(B)=y
formulary
tan(A+B)=tan(A)+tan(B)1−tan(A)⋅tan(B)cot(A+B)=cot(A)⋅cot(B)−1cot(A)+cot(B)
1.
tan(A+B)=1cot(A+B)=x1−tan(A)⋅tan(B)1−tan(A)⋅tan(B)=x⋅cot(A+B)tan(A)⋅tan(B)−1=−x⋅cot(A+B)tan(A)⋅tan(B)=1−x⋅cot(A+B)1cot(A)⋅1cot(B)=1−x⋅cot(A+B)cot(A)⋅cot(B)=11−x⋅cot(A+B)
2.
cot(A+B)=cot(A)⋅cot(B)−1yy⋅cot(A+B)=cot(A)⋅cot(B)−11+y⋅cot(A+B)=cot(A)⋅cot(B)cot(A)⋅cot(B)=11−x⋅cot(A+B)1+y⋅cot(A+B)=11−x⋅cot(A+B)[1+y⋅cot(A+B)]⋅[1−x⋅cot(A+B)]=11−x⋅cot(A+B)+y⋅cot(A+B)−yx⋅cot2(A+B)=1−x⋅cot(A+B)+y⋅cot(A+B)−yx⋅cot2(A+B)=0|:cot(A+B)−x+y−yx⋅cot(A+B)=0yx⋅cot(A+B)=y−x|:xycot(A+B)=y−xxycot(A+B)=yxy−xxycot(A+B)=1x−1y
If tanA+tanB=x & cotA+cotB=y, then prove that-
cot(A+B)=1/x-1/y
tan(A)+tan(B)=xcot(A)+cot(B)=y
formulary
tan(A+B)=tan(A)+tan(B)1−tan(A)⋅tan(B)cot(A+B)=cot(A)⋅cot(B)−1cot(A)+cot(B)
1.
tan(A+B)=1cot(A+B)=x1−tan(A)⋅tan(B)1−tan(A)⋅tan(B)=x⋅cot(A+B)tan(A)⋅tan(B)−1=−x⋅cot(A+B)tan(A)⋅tan(B)=1−x⋅cot(A+B)1cot(A)⋅1cot(B)=1−x⋅cot(A+B)cot(A)⋅cot(B)=11−x⋅cot(A+B)
2.
cot(A+B)=cot(A)⋅cot(B)−1yy⋅cot(A+B)=cot(A)⋅cot(B)−11+y⋅cot(A+B)=cot(A)⋅cot(B)cot(A)⋅cot(B)=11−x⋅cot(A+B)1+y⋅cot(A+B)=11−x⋅cot(A+B)[1+y⋅cot(A+B)]⋅[1−x⋅cot(A+B)]=11−x⋅cot(A+B)+y⋅cot(A+B)−yx⋅cot2(A+B)=1−x⋅cot(A+B)+y⋅cot(A+B)−yx⋅cot2(A+B)=0|:cot(A+B)−x+y−yx⋅cot(A+B)=0yx⋅cot(A+B)=y−x|:xycot(A+B)=y−xxycot(A+B)=yxy−xxycot(A+B)=1x−1y
Here's an alternative method.
cot(A+B)=1tan(A+B)=1−tan(A)tan(B)tan(A)+tan(B)=(cot(A)+cot(B))(1−tan(A)tan(B))(cot(A)+cot(B))(tan(A)+tan(B))=cot(A)+cot(B)−tan(A)−tan(B))(cot(A)+cot(B))(tan(A)+tan(B)=1tan(A)+tan(B)−1cot(A)+cot(B)=1x−1y.
Here's the proof in the opposite direction :
1/x - 1/y =
1/ [ tanA + tanB] - 1 /[ cotA+cotB]
[(cotA + cotB) - (tanA + tanB)] / [(tanA + tanB) ( cotA + cotB)]
[(cotAcotB - 1)/(cot(A + B) - [tan(A + B)(1 - tanAtanB) ] / [(tanA + tanB) ( cotA + cotB)]
[ (cotAcotB -1) - cot(A +B)tan(A+B)( 1 - tanAtanB)]/ [ (cot(A+B)(tanA + tanB)(cotA + cotB)]
[(cotAcotB -1 ) (1 - tanAtanB)] / [(tanA + tanB)(cotAcotB -1)]
(1 - tanAtanB) / (tanA + tanB) =
1 / [( tanA + tanB) / (1 - tanAtanB)] =
1 / tan(A + B) =
cot(A + B)