+0  
 
0
208
2
avatar

If the first three terms of an arithmetic progression are (x+3). (3x-10) and (2x+10), find x.

Guest Feb 9, 2018
 #1
avatar
+1

(x+3)+ (3x-10) + (2x+10) =6x + 3

Sum them up as an arithmetic series:

6x + 3=3/2 *[2*[x+3] + (3-1)*(2x - 13)], solve for x

 

Solve for x:

6 x + 3 = (3 (2 (x + 3) + 2 (2 x - 13)))/2

 

6 x + 3 = (3 (2 x + 6 + 2 (2 x - 13)))/2

 

6 x + 3 = (3 (4 x - 26 + 2 x + 6))/2

 

Grouping like terms, 4 x + 2 x - 26 + 6 = (2 x + 4 x) + (6 - 26):

6 x + 3 = (3 ((2 x + 4 x) + (6 - 26)))/2

 

6 x + 3 = (3 (6 x + (6 - 26)))/2

 

6 x + 3 = (3 (6 x + -20))/2

 

Multiply both sides by 2:

2 (6 x + 3) = (2×3 (6 x - 20))/2

 

(2×3 (6 x - 20))/2 = 2/2×3 (6 x - 20) = 3 (6 x - 20):

2 (6 x + 3) = 3 (6 x - 20)

Expand out terms of the left hand side:

12 x + 6 = 3 (6 x - 20)

 

Expand out terms of the right hand side:

12 x + 6 = 18 x - 60

12x - 18x = -60 - 6

- 6x = - 66

x = -66 / -6

x= 11

 

 

 

 

 

 

 

 

 

 

 

Guest Feb 9, 2018
edited by Guest  Feb 10, 2018
 #2
avatar+87639 
+1

We have that :

 

(x + 3)  + d  =  (3x - 10)       (1)

 

(3x - 10) + d  = (2x + 10)     (2)

 

Subtract  (2)  from  (1)   and we have

 

( x + 3)  - (3x - 10)   = (3x - 10) - (2x + 10)     simplify

 

-2x + 13   =  x - 20      add 2x, 20 to both sides

 

33   =  3x       divide both sides by 3

 

11  = x

 

 

cool cool cool

CPhill  Feb 10, 2018

14 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.