+0

If the first three terms of an arithmetic progression are (x+3). (3x-10) and (2x+10), find x.

0
105
2

If the first three terms of an arithmetic progression are (x+3). (3x-10) and (2x+10), find x.

Guest Feb 9, 2018
Sort:

#1
+1

(x+3)+ (3x-10) + (2x+10) =6x + 3

Sum them up as an arithmetic series:

6x + 3=3/2 *[2*[x+3] + (3-1)*(2x - 13)], solve for x

Solve for x:

6 x + 3 = (3 (2 (x + 3) + 2 (2 x - 13)))/2

6 x + 3 = (3 (2 x + 6 + 2 (2 x - 13)))/2

6 x + 3 = (3 (4 x - 26 + 2 x + 6))/2

Grouping like terms, 4 x + 2 x - 26 + 6 = (2 x + 4 x) + (6 - 26):

6 x + 3 = (3 ((2 x + 4 x) + (6 - 26)))/2

6 x + 3 = (3 (6 x + (6 - 26)))/2

6 x + 3 = (3 (6 x + -20))/2

Multiply both sides by 2:

2 (6 x + 3) = (2×3 (6 x - 20))/2

(2×3 (6 x - 20))/2 = 2/2×3 (6 x - 20) = 3 (6 x - 20):

2 (6 x + 3) = 3 (6 x - 20)

Expand out terms of the left hand side:

12 x + 6 = 3 (6 x - 20)

Expand out terms of the right hand side:

12 x + 6 = 18 x - 60

12x - 18x = -60 - 6

- 6x = - 66

x = -66 / -6

x= 11

Guest Feb 9, 2018
edited by Guest  Feb 10, 2018
#2
+85759
+1

We have that :

(x + 3)  + d  =  (3x - 10)       (1)

(3x - 10) + d  = (2x + 10)     (2)

Subtract  (2)  from  (1)   and we have

( x + 3)  - (3x - 10)   = (3x - 10) - (2x + 10)     simplify

-2x + 13   =  x - 20      add 2x, 20 to both sides

33   =  3x       divide both sides by 3

11  = x

CPhill  Feb 10, 2018

27 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details