+0  
 
0
271
1
avatar

if the half-life of an isotope is 7.6 minutes, how many grams will remain after 12.4 minutes if you started with 80 grams?

Guest Jan 23, 2015

Best Answer 

 #1
avatar+86889 
+5

We have

40 = 80e^(7.6k)    solve for k

divide both sides by 80

.5 = e^(7.6k)    take the ln of both sides

ln.5 = lne^(7.6k)  and we can write

ln.5 = (7.6k)lne    and lne = 1

ln.5 = 7.6k  divide both sides by 7.6

ln.5/7.6 = k = about -.0912

So, after 12.4 minutes, we have

80e^(12.4 * -.0912) = about 25.82 g

 

CPhill  Jan 23, 2015
 #1
avatar+86889 
+5
Best Answer

We have

40 = 80e^(7.6k)    solve for k

divide both sides by 80

.5 = e^(7.6k)    take the ln of both sides

ln.5 = lne^(7.6k)  and we can write

ln.5 = (7.6k)lne    and lne = 1

ln.5 = 7.6k  divide both sides by 7.6

ln.5/7.6 = k = about -.0912

So, after 12.4 minutes, we have

80e^(12.4 * -.0912) = about 25.82 g

 

CPhill  Jan 23, 2015

3 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.