+0  
 
0
86
1
avatar+509 

If the sum of three real numbers is $0$ and their product is $17$, then what is the sum of their cubes?

michaelcai  Oct 12, 2017
Sort: 

1+0 Answers

 #1
avatar+79881 
+1

x + y + z  = 0   →-  -(x + y)  = z  →   z^3 =  - (x^3 + 3x^2y + 3xy^2 + y^3)

 

xyz  = 17

 

xy [ -(x + y) ]  = 17

 

xy (x + y)  = -17  →  x^2y + xy^2  = -17  →  3x^2y + 3xy^2  = -51

 

So......

 

x^3  + y^3  +  [ z^3 ]

 

x^3  + y^3  +  [ -  ( x^3 + 3x^2y + 3xy^2 + y^3) ]  =

 

-3x^2y - 3xy^2  =

 

-[ 3x^2y + 3xy^2]  =

 

- [-51]  =

 

51

 

 

 

cool cool cool

CPhill  Oct 12, 2017

4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details