+0  
 
0
253
2
avatar

If the two roots of the quadratic 3x2+5x+k are -5+i sqrt(11)/6, -5-i sqrt(11)/6, what is k?

 Mar 16, 2018
 #1
avatar+9926 
+1

If the two roots of the quadratic 3x2+5x+k are -5+i sqrt(11)/6, -5-i sqrt(11)/6, what is k?

laugh

 Mar 16, 2018
 #2
avatar+21299 
+1

If the two roots of the quadratic 3x2+5x+k are ( -5+i sqrt(11))/6, ( -5-i sqrt(11) )/6, what is k?

 

\(\text{Let $ x_1 = \dfrac{ -5+i \sqrt{11} }{6} $ } \\ \text{Let $ x_2 = \dfrac{ -5-i \sqrt{11} }{6} $ } \)

 

\(\begin{array}{|rcll|} \hline 3x^2+5x+k &=& 0 \quad & | \quad : 3 \\ x^2+\dfrac{5}{3}x+\underbrace{\dfrac{k}{3}}_{=x_1x_2} &=& 0 \\\\ \dfrac{k}{3} &=& x_1x_2 \\\\ \dfrac{k}{3} &=& \left( \dfrac{ -5+i \sqrt{11} }{6} \right) \left( \dfrac{ -5-i \sqrt{11} }{6} \right) \\\\ \dfrac{k}{3} &=& \dfrac{ (-5)^2-(i \sqrt{11})^2 }{36} \\\\ \dfrac{k}{3} &=& \dfrac{25-i^2 \cdot 11 }{36} \quad & | \quad i^2 = -1 \\\\ \dfrac{k}{3} &=& \dfrac{25-(-1) \cdot 11 }{36} \\\\ \dfrac{k}{3} &=& \dfrac{25+11 }{36} \\\\ \dfrac{k}{3} &=& \dfrac{36 }{36} \\\\ \dfrac{k}{3} &=& 1 \\\\ \mathbf{k} & \mathbf{=} & \mathbf{3} \\ \hline \end{array}\)

 

 

laugh

 Mar 16, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.