+0

# If the two roots of the quadratic 3x 2 +5x+k are -5+i sqrt(11)/6, -5-i sqrt(11)/6, what is k?

0
62
2

If the two roots of the quadratic 3x2+5x+k are -5+i sqrt(11)/6, -5-i sqrt(11)/6, what is k?

Guest Mar 16, 2018
Sort:

#1
+9243
+1

If the two roots of the quadratic 3x2+5x+k are -5+i sqrt(11)/6, -5-i sqrt(11)/6, what is k?

Omi67  Mar 16, 2018
#2
+19207
+1

If the two roots of the quadratic 3x2+5x+k are ( -5+i sqrt(11))/6, ( -5-i sqrt(11) )/6, what is k?

$$\text{Let  x_1 = \dfrac{ -5+i \sqrt{11} }{6}  } \\ \text{Let  x_2 = \dfrac{ -5-i \sqrt{11} }{6}  }$$

$$\begin{array}{|rcll|} \hline 3x^2+5x+k &=& 0 \quad & | \quad : 3 \\ x^2+\dfrac{5}{3}x+\underbrace{\dfrac{k}{3}}_{=x_1x_2} &=& 0 \\\\ \dfrac{k}{3} &=& x_1x_2 \\\\ \dfrac{k}{3} &=& \left( \dfrac{ -5+i \sqrt{11} }{6} \right) \left( \dfrac{ -5-i \sqrt{11} }{6} \right) \\\\ \dfrac{k}{3} &=& \dfrac{ (-5)^2-(i \sqrt{11})^2 }{36} \\\\ \dfrac{k}{3} &=& \dfrac{25-i^2 \cdot 11 }{36} \quad & | \quad i^2 = -1 \\\\ \dfrac{k}{3} &=& \dfrac{25-(-1) \cdot 11 }{36} \\\\ \dfrac{k}{3} &=& \dfrac{25+11 }{36} \\\\ \dfrac{k}{3} &=& \dfrac{36 }{36} \\\\ \dfrac{k}{3} &=& 1 \\\\ \mathbf{k} & \mathbf{=} & \mathbf{3} \\ \hline \end{array}$$

heureka  Mar 16, 2018

### 33 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details