+0  
 
0
623
4
avatar+297 

If we use (x+) to indicate the following sum
   1 + 2 + 3 + ... + x
then find the value of k in the following equation
(28+) - (27+) = (k+)

kes1968  Aug 12, 2015

Best Answer 

 #4
avatar+92669 
+10

The sum of the first "k" positive integers is given by :   (k)(k + 1)/2

 

So  (x +)   where x =  28  is just  (28)(29) /2     and  (x+) where x = 27  is just (27)(28)/2 

 

So we have

 

(28)(29)/2 -  (270(28)/2        ..... factor out 28/2

 

[28/2] [ 29 - 27]=

 

[14] [2]  = 28

 

And notice that :

 

1 + 2 + 3 + 4 + 5 + 6 + 7  = 28   

 

So this equals the sum of the first seven positive integers  =  (7)(8)/2  = 56/2 = (7+)

 

 

 

  

CPhill  Aug 12, 2015
 #1
avatar+92669 
+5

(28+) - (27+) =

 

(28)(29)/ 2 - (27)(28)/2  =

 

(28) [ (29) - (27) ] / 2 =

 

(28/2) (2) = 28  =  (7)(8)/ 2 =   (7+)   ...so k = 7

 

 

  

CPhill  Aug 12, 2015
 #2
avatar+297 
0

I AN NOT GETTING WHAT YOU HAVE GIVEN PLEASE EXPLAIN YOUR ANS TO ME MORE BRIEFLY

kes1968  Aug 12, 2015
 #3
avatar+20633 
+10

If we use (x+) to indicate the following sum
   1 + 2 + 3 + ... + x
then find the value of k in the following equation
(28+) - (27+) = (k+)

 

$$\small{\text{$
\begin{array}{rcl}
(28+)-(27+) = (k+) = 28 &=& S_k \qquad (28+) = S_{28} \quad (27+)=S_{27}\\\\
S_{28}-S_{27} = t_{28} = 28&=&S_k\\\\
S_k &=& t_1 \cdot \dbinom{k}{1} + d\cdot \dbinom{k}{2} \qquad t_1=d=1\\\\
S_k &=& \dbinom{k}{1} + \dbinom{k}{2} = \dbinom{k+1}{2} = 28\\\\ \\
\dfrac{k(k+1)}{2} &=& 28 \\\\
k(k+1) &=& 56\\\\
k^2+k-56&=&0\\\\
\Rightarrow k &=& \dfrac{-1+15}{2} = 7\\\\
\mathbf{S_k = (k+) }& \mathbf{=} & \mathbf{(7+)}\\\\
(7+)=1+2+3+4+5+6+7&=&28 \\
\end{array}
$}}$$

 

heureka  Aug 12, 2015
 #4
avatar+92669 
+10
Best Answer

The sum of the first "k" positive integers is given by :   (k)(k + 1)/2

 

So  (x +)   where x =  28  is just  (28)(29) /2     and  (x+) where x = 27  is just (27)(28)/2 

 

So we have

 

(28)(29)/2 -  (270(28)/2        ..... factor out 28/2

 

[28/2] [ 29 - 27]=

 

[14] [2]  = 28

 

And notice that :

 

1 + 2 + 3 + 4 + 5 + 6 + 7  = 28   

 

So this equals the sum of the first seven positive integers  =  (7)(8)/2  = 56/2 = (7+)

 

 

 

  

CPhill  Aug 12, 2015

34 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.