+0  
 
0
591
1
avatar

If \(n=1d41_8\), where \(d\) represents a base-8 digit (and \(1d41_8\) represents a four-digit number whose second digit is \(d\)), then what is the sum of all possible values of \(n\) in base 10?

 Feb 9, 2021
 #1
avatar+118690 
+1

\(n= 1+4*8 + d*8^2 + 1*8^3 \)   (base 10)    where   d is and integer and   \(0\le d \le7\)

 

n= 1 + 32 +68d + 512

 

you can take it from there.

 Feb 9, 2021

3 Online Users

avatar