+0  
 
0
73
5
avatar

If x, y, and z are positive with xy = 20, xz = 35, and yz = 14, then what is xyz?

 Nov 14, 2020

Best Answer 

 #1
avatar+50 
+4

So we know that xy=20, xz=35, and yz=14. If we multiply them together to form an equation, we get:

 

\(xy \cdot xz \cdot yz = 20 \cdot 35 \cdot 14\)

 

Finding the product, we have: 

 

\(x^2y^2z^2 = 9800\)

 

This is the same as 

 

\((xyz)^2 = 9800\)

 

which finding the square root gives us 

 

\(xyz=\sqrt{9800}\)

 

Simplifying, we find: 

 

\(\sqrt{9800} \implies \sqrt{4900 \cdot 2} \implies \sqrt{4900} \cdot \sqrt2 \implies \boxed{70\sqrt2}\)

 Nov 14, 2020
 #1
avatar+50 
+4
Best Answer

So we know that xy=20, xz=35, and yz=14. If we multiply them together to form an equation, we get:

 

\(xy \cdot xz \cdot yz = 20 \cdot 35 \cdot 14\)

 

Finding the product, we have: 

 

\(x^2y^2z^2 = 9800\)

 

This is the same as 

 

\((xyz)^2 = 9800\)

 

which finding the square root gives us 

 

\(xyz=\sqrt{9800}\)

 

Simplifying, we find: 

 

\(\sqrt{9800} \implies \sqrt{4900 \cdot 2} \implies \sqrt{4900} \cdot \sqrt2 \implies \boxed{70\sqrt2}\)

mobro Nov 14, 2020
 #2
avatar+114221 
0

Very nice, mobro   !!!!

 

cool cool cool

 Nov 14, 2020
 #3
avatar+846 
+1

Good job, mobro! How can we find the value of x, y, and z?

 Nov 14, 2020
 #4
avatar+50 
+3

Can you clarify on your question? Do you mean solving each value seprately? If so, can you ask it in a seperate question so no one gets confused? I'll try to answer it.

mobro  Nov 15, 2020
 #5
avatar+112016 
+1

I think the question is pretty clear.

It is asking for the product.   Thanks for your answer Mobro   laugh

Melody  Nov 15, 2020
edited by Melody  Nov 15, 2020

26 Online Users

avatar
avatar