+0  
 
0
688
5
avatar

If x, y, and z are positive with xy = 20, xz = 35, and yz = 14, then what is xyz?

 Nov 14, 2020

Best Answer 

 #1
avatar+55 
+4

So we know that xy=20, xz=35, and yz=14. If we multiply them together to form an equation, we get:

 

\(xy \cdot xz \cdot yz = 20 \cdot 35 \cdot 14\)

 

Finding the product, we have: 

 

\(x^2y^2z^2 = 9800\)

 

This is the same as 

 

\((xyz)^2 = 9800\)

 

which finding the square root gives us 

 

\(xyz=\sqrt{9800}\)

 

Simplifying, we find: 

 

\(\sqrt{9800} \implies \sqrt{4900 \cdot 2} \implies \sqrt{4900} \cdot \sqrt2 \implies \boxed{70\sqrt2}\)

 Nov 14, 2020
 #1
avatar+55 
+4
Best Answer

So we know that xy=20, xz=35, and yz=14. If we multiply them together to form an equation, we get:

 

\(xy \cdot xz \cdot yz = 20 \cdot 35 \cdot 14\)

 

Finding the product, we have: 

 

\(x^2y^2z^2 = 9800\)

 

This is the same as 

 

\((xyz)^2 = 9800\)

 

which finding the square root gives us 

 

\(xyz=\sqrt{9800}\)

 

Simplifying, we find: 

 

\(\sqrt{9800} \implies \sqrt{4900 \cdot 2} \implies \sqrt{4900} \cdot \sqrt2 \implies \boxed{70\sqrt2}\)

mobro Nov 14, 2020
 #2
avatar+129899 
0

Very nice, mobro   !!!!

 

cool cool cool

 Nov 14, 2020
 #3
avatar+1641 
+1

Good job, mobro! How can we find the value of x, y, and z?

 Nov 14, 2020
 #4
avatar+55 
+3

Can you clarify on your question? Do you mean solving each value seprately? If so, can you ask it in a seperate question so no one gets confused? I'll try to answer it.

mobro  Nov 15, 2020
 #5
avatar+118687 
+1

I think the question is pretty clear.

It is asking for the product.   Thanks for your answer Mobro   laugh

Melody  Nov 15, 2020
edited by Melody  Nov 15, 2020

2 Online Users

avatar